
Transformation and trend{seasonal deompositionPeter ThomsonStatistis Researh Assoiates LtdNew ZealandTohru OzakiInstitute of Statistial MathematisJapanAbstratMany time series, partiularly monthly eonomi and oÆial time series, are both non{linear and seasonal. In pratie simple power transformations are often used to trans-form suh series to additive linear models and standard trend{seasonal deompositionproedures are then applied for various purposes inluding seasonal adjustment, trendextration and foreasting.This paper onsiders the e�ets of trend{seasonal deomposition on transformed timeseries whih are then transformed bak to provide seasonal and trend omponents in theoriginal sale of the data. It is shown that this approah leads to ambiguities in theresulting deomposition whih result in systemati biases to these omponents. Thesee�ets are partiularly evident when there is signi�ant variation about the trend, due toeither or both of the seasonal and irregular omponents.A new trend{seasonal deomposition is proposed whih is largely free of these biases.Results are illustrated by simulation and with referene to NZ oÆial time series.Keywords: Trend{seasonal deomposition; seasonal adjustment; trend estimation; trans-formation; bias orretion.1 IntrodutionMany time series, partiularly monthly eonomi and oÆial time series, are both non{linear and seasonal. In pratie simple power transformations are often used to transformsuh series to additive linear models and standard trend{seasonal deomposition proe-dures are then applied for various purposes inluding seasonal adjustment, trend extra-tion and foreasting. Aurate identi�ation of trends from seasonal data is important ifonly to determine important trend parameters suh as diretion, level and rate of hange,or for the purpose of omparison between series. In the development that follows werestrit attention to monthly time series with annual seasonality although our results andobservations apply more generally.A broad lass of non{linear seasonal time series models widely used in pratie is given1



by the additive model �(Yt) = Tt + St + �t (1)where Yt denotes the original series, �(y) a suitable transformation, Tt and St the trend andseasonal omponents and the so{alled irregular omponent �t denotes noise. The latteris assumed to be stationary with mean zero (often white noise), and all three omponentsin the additive deomposition are assumed to be independent. Other omponents suhas a alendar omponent an also be added. To further identify the omponents in (1)additional onstraints are needed. These inlude loal smoothness onstraints for thetrend and the year to year evolution of the seasonal. Furthermore, the seasonal omponentis assumed to approximately sum to zero over any twelve month period so that11Xj=0St�j � 0: (2)These onstraints are suÆient to ensure that the trend Tt runs through the middle ofthe transformed data over any twelve month period.The most widespread transformations used are the identity �(y) = y for the simple addi-tive model and the logarithm �(y) = log y for data whose omponents are multipliative.The trend{seasonal deomposition proedure SABL (Cleveland et al (1978)) augmentsthese by onsidering the lass of power transformations de�ned by�(y) = 8><>: yp (p > 0)log y (p = 0)�yp (p < 0) : (3)It is assumed that a value of p an be found whih makes the deomposition (1) hold,at least to a �rst approximation. In pratie, p is hosen so that there is no interationbetween the trend and seasonal omponents in (1). However the trend{seasonal deompo-sition proedures used by most oÆial statistial agenies in the world are X{11{ARIMA(Dagum (1980)) and X{12{ARIMA (Findley et al (1988)). These are based on the origi-nal X{11 proedure (Shiskin et al (1967)) whih has its own multipliative model whihis di�erent from (1) with �(y) = log y. A useful referene to seasonal models suh as(1) and trend{seasonal deomposition proedures in general is given in the survey artileCleveland (1983).Consider the ase where Yt follows (1) with �(y) not the identity transformation. Toseasonally adjust Yt it is ommon pratie to seasonally adjust the transformed series �(Yt)by removing the seasonal omponent and then transforming bak into the original sale ofthe observations. Seasonally adjusted trends an also be obtained by bak{transformingthe trend of the transformed series. However this approah an lead to ambiguities interms of de�nition of trend and seasonal, partiularly where there is signi�ant variationabout the trend, due to either or both of the seasonal or irregular omponents.An example is given in Figure 1 whih shows the number of visitor arrivals to NewZealand by month over the period January 1980 to Deember 1991. Three trends aresuperimposed: the trend estimated by the X{11 multipliative model and two SABL2
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Figure 1: Visitor arrivals to New Zealand by month. Three trends are superimposed: thetrend estimated by the X{11 multipliative model (dotted line) and two SABL trends,one of the untransformed data (solid line) and the other the exponential of the trend ofthe logarithms of the data (dashed line)trends, one of the untransformed data and the other, the exponential of the trend of thelogarithms of the data. Despite the fat that X{11 trends are loally quadrati and SABLtrends are loally linear, both the X{11 and SABL trends of the original data are muhthe same. However there is a signi�ant di�erene between these and the exponential ofthe trend of the logarithms of visitor arrivals. This di�erene, essentially the di�erenebetween the arithmeti and geometri means, was �rst systematially disussed in theliterature by Young (1968). His orretion formulae for the multipliative model arelosely related to the more general formulae proposed here.The reason why the X{11 multipliative trend yields muh the same trend as the SABLtrend from the original visitor data is disussed in Setion 2. However the important pointto note is the following. If an additive model is �tted to the transformed data using (1)and then the inverse transform applied, the trend, seasonal and seasonally adjusted seriesobtained are not independent of the transformation hosen. Systemati di�erenes existbetween them. In many ases the di�erenes are slight. However in ases where there issigni�ant variability about the trend due to either or both of the seasonal or irregular,the di�erene an be sizeable. For the New Zealand Visitor Arrivals data given in Figure1, the di�erene between the two SABL trends during June 1988 is 1839 arrivals or 2.5%.3



The above disussion highlights the importane of de�ning appropriate trend and seasonalomponents in the ase where �(y) is not the identity transformation. The standardrequirement that is built in to both the additive and multipliative X{11 models is that(moving) annual totals of seasonally adjusted and unadjusted series should be essentiallythe same. We shall refer to this as the seasonal balane onstraint. This is an eonomirequirement whih ensures that the proess of seasonal adjustment is essentially one ofredistribution of seasonal variation so that, on an annual basis, observed totals (wealth,redits, debits, numbers of visitor arrivals et) are neither reated nor destroyed. Althoughthis is a natural eonomi requirement, for transformed series following (1) it onitswith (2) exept in the additive ase �(y) = y. In Setion 3 we use the seasonal balaneonstraint to de�ne appropriate trend and seasonal omponents for the original series Yt.2 X{11 ModelsBefore developing appropriate de�nitions of trend, seasonal and irregular for models suhas (1) where �(y) 6= y, it is instrutive to review the X{11 multipliative model.X{11 was initially developed by Shiskin et al (1967). Despite many new developments inseasonal time series models, it remains the most popular method of seasonal adjustmentand forms the basis of X{11{ARIMA (Dagum (1980)) and X{12{ARIMA (Findley etal (1988)) used by the majority of the world's oÆial statistial agenies. The additiveversion of X{11 is as given in (1) with �(y) = y. However the multipliative version ofX{11 is essentially based on the modelYt = Tt(1 + St)(1 + �t) (4)where the seasonal fator St satis�es (2) and E(�t) = 0. Applying the logarithm trans-formation to (4) yields a model whih is approximately the same as (1) with �(y) = log yprovided that St and �t are small. If either or both of the seasonal or irregular are size-able then di�erenes emerge as is evidened in Fig. 1. In partiular the two seasonalonstraints di�er with one requiring the moving annual arithmeti mean, the other themoving annual geometri mean, of the seasonals to be approximately zero.The model (4) an also be written in additive form asYt = Tt + TtSt + Tt(1 + St)�t: (5)Provided that the trend is smooth, (2) ensures that the seasonal omponent TtSt willapproximately sum to zero over any twelve month period. This model is similar to thatproposed by Durbin and Murphy (1975), but has heteroskedasti multipliative errorsrather than additive homoskedasti errors.The additive form (5) helps to explain the non{linear X{11 model �tting proedure.Broadly speaking, the trend Tt is �rst estimated by �ltering (5) with a linear low{pass �lterthat also removes the seasonal TtSt. The resulting trend estimate is then divided through(5) and the seasonal omponent 1 + St extrated using simple linear �lters. This is thendivided into (4) to obtain a seasonally adjusted series. Further smoothing iterations are4



arried out together with various proedures to down{weight outliers, adjust for alendare�ets et. Thus it an be argued that the X{11 proedure expresses a multipliativemodel as an additive model and �ts aordingly. This has the advantage of ensuring thatthe seasonal balane onstraint is satis�ed and is the reason why, in Figure 1, the X{11multipliative trend of the NZ visitor arrivals series is muh the same as the SABL trendfrom the untransformed data.3 A new trend{seasonal deompositionFollowing the example of the X{11 model (5), the general strategy we adopt is to ex-press Yt in additive form with trend, seasonal and irregular de�ned as funtions of theorresponding omponents in the transformed series. The derived trend, seasonal andseasonally adjusted series are then onstruted from the estimates of the omponents inthe transformed series. This approah is impliit in the X{11 multipliative proedure.It has the virtue of separating the model �tting, whih takes plae with the transformedseries, from the additive trend{seasonal deomposition of the original series Yt whih isonstruted so that the seasonal balane onstraint remains approximately true.Before onstruting an additive deomposition for Yt, we �rst need to make some basiassumptons about the trend, seasonal and irregular omponents given in (1). We shallassume that all three omponents are independent and that the trend Tt follows a de-terministi or stohasti model whih is loally smooth. For example X{11 and SABLassume that Tt follows a loal low{order deterministi polynomial model in t within amoving window of onseutive monthly observations. On the other hand Akaike (1980),Gersh and Kitagawa (1983), Harvey (1989) and many others assume global stohastimodels for Tt of the form �pTt = �twhere �t is white noise and � is the bakwards di�erene operator satisfying �Xt =Xt � Xt�1. Typially p = 1 or 2 and the variane of �t is taken small enough to ensurethat Tt is smooth. The irregular omponent �t is assumed to be a zero{mean stationarytime series.We shall assume that the evolving seasonal omponent an always be represented asSt = 6Xj=1f�j(t) os t�j + �j(t) sin t�jg (6)where �j = 2�j=12 and �6(t) = 0. The zero frequeny omponent orresponding to�0 = 0 has been omitted from (6) to ensure that St measures departures from the trendTt whih desribes the instantaneous loal level of �(Yt) at time t. As a onsequenethis representation automatially satis�es (2) sine P11j=0 St�j will be approximately zeroprovided that the �j(t) and �j(t) are suÆiently smooth. Note that it will rarely be thease that P11j=0 St�j is identially zero. This will only be true when St is stritly periodiand the �j(t), �j(t) are onstants. If, as is ommonly the ase, the �j(t), �j(t) are evolvingslowly over time then St will also evolve slowly and P11j=0 St�j will have the appearane of5



a stationary time series with small variane. However, in the ase where the �j(t), �j(t)are evolving linearly in t, then P11j=0 St�j may also exhibit a seasonal pattern whih, inturn, will need to approximately sum to zero over any twelve month period. In this ase(2) will need to be replaed by P11j=0P11k=0 St�j�k � 0.The model (6) is impliitly used by X{11 and SABL where the �j(t), �j(t) are assumedto be onstant or linear in t within an appropriately de�ned moving window. The mixedmodel proposed by Durbin and Murphy (1975) also �ts this framework. In terms ofstohasti seasonal models, (6) is the same as the model proposed by Hannan (1967) (seealso Ng and Young (1990)) where �j(t), �j(t) follow the stohasti trend models��j(t) = �j(t); ��j(t) = �j(t) (7)and the white noise proesses �j(t) (j = 1; : : : ; 6) and �j(t) (j = 1; : : : ; 5) are mutuallyindependent with E(�j(t)2) = E(�j(t)2) = �2j . In fat this stohasti seasonal model ismore general than might �rst appear. Dongfeng et al (1997) show, among other results,that Hannan's model is stohastially equivalent to the model proposed by Harvey (1989)where St = 6Xj=1uj(t)and  uj(t)vj(t) ! =  os �j sin�j� sin�j os�j ! uj(t� 1)vj(t� 1) !+  �j(t)�j(t) !with the �j(t), �j(t) de�ned as in (7). (This result was also informally ommuniated tothe �rst author by W.R. Bell (US Census Bureau) at an earlier date.) This seasonal modelis used in the strutural time series modelling proedure STAMP (Koopman et al (1995)and the seasonal deomposition proedure MING (Brue and Jurke (1996)). Moreover,if the �j(t), �j(t) are replaed by arefully hosen stationary proesses, then (6) an beshown to enompass the stohasti seasonal model11Xj=0St�j = �twhere �t is stationary. The ase where �t is white noise is ommonly used (see Gersh andKitagawa (1983), Harvey (1989) for example). If �t is an AR(1) proess then the seasonalmodel is equivalent to that used in BAYSEA (Akaike (1980)). The generality of (6) andthe properties of suh stohasti seasonal models is the subjet of ongoing researh withsome results already reported in Dongfeng et al (1997). It is suÆient for our purposeshere that we assume that St admits the instantaneous Fourier representation (6) with the�j(t), �j(t) evolving slowly over time.To handle both (1) and (4), we now onsiderYt = g(Tt; St; �t) (8)where the omponents Tt, St, �t are as de�ned above and g(x; s; e) is either ��1(x+ s+ e)with �(y) given by (3) or the X-11 model x(1 + s)(1 + e) given by (4). More generally6



g(x; s; e) ould be any well-behaved funtion of its arguments. We write Yt in the additiveform Yt = T �t + S�t + ��t (9)where T �t , S�t , ��t are yet to be de�ned trend, seasonal and irregular omponents. Proeed-ing onstrutively we de�ne Mt = T �t + S�t asMt = Efg(Tt; St; �t)jT;Sg (10)where T and S denote the proesses fTt; t = 0;�1; : : :g and fSt; t = 0;�1; : : :g respe-tively. This additively deomposes Yt into a systemati omponent Mt and an irregularomponent ��t = Yt �Mt (11)where ��t has zero mean and is unorrelated with Mt.Now Mt is an evolving trend and seasonal pattern that is a funtion M(x; s) of Tt and Stwhih, from (6), an be written asMt =M(Tt; St) =M(Tt; 6Xj=1f�j(t) os t�j + �j(t) sin t�jg):However any funtion of an (instantaneous) Fourier representation will reate a new (ad-ditive) Fourier representation of the form (6) with new oeÆients �j(t), �j(t) and, inpartiular, an additional zero frequeny (�0 = 0) or loal level omponent with �0(t) = 0,but �0(t) not neessarily zero. For example, if M(x; s) = (x+ s)2 thenM(Tt; St) = ( 6Xj=0f�j(t) os t�j + �j(t) sin t�jg)2 = 6Xj=0faj(t) os t�j + bj(t) sin t�jgwhere �0(t) = Tt, �0(t) = 0 anda0(t) = �0(t)2 + 5Xj=1f�j(t)2 + �j(t)2g+ �6(t)2; b0(t) = 0:This an be veri�ed by diret algebra or by using the formula for the Fourier oeÆientswhih, for �0 = 0 givesa0(t) = 112 11Xk=0( 6Xj=0f�j(t) os(t� k)�j + �j(t) sin(t� k)�jg)2:These arguments lead us us to de�ne the instantaneous loal level of Yt at time t asT �t = Ef 112 11Xk=0M(Tt; 6Xj=1f�j(t) os(t� k)�j + �j(t) sin(t� k)�jg)jT;Sg (12)where the onditional expetation ensures that T �t is a funtion of Tt and S. The on-ditional expetation is needed in general sine the seond argument of M is not St�k7



unless the �j(t), �j(t) are loally onstants. However the onditional expetation willnot be neessary in the speial ase where the �j(t), �j(t) are extratly diretly from thetransformed series. The seasonal omponent S�t is now de�ned by subtration asS�t =Mt � T �t : (13)In the speial ase of the identity transformation where g(x; s; e) = x + s + e we haveM(x; s) = x + s and T �t = Tt; S�t = St; ��t = �t:For the X-11 ase where g(x; s; e) = x(1 + s)(1 + e) we have M(x; s) = x(1 + s) andT �t = Tt; S�t = TtSt; ��t = Tt(1 + St)�t:This leads to the following de�nition.De�nition 1 Let Yt follow the model spei�ed by (8). Then the trend T �t , the seasonal S�tand the irregular ��t in the additive deomposition (9) of Yt are de�ned by (10), (11), (12)and (13). In partiular, the identity transformation model (1) with p = 0 and the X{11model (5) have this additive form.This de�nes the required trend{seasonal deomposition. Given any partiular model forYt of the form (8), one ould derive preise formulae for T �t , S�t and ��t as funtions of Tt,St and �t. Then these funtions and the estimated trend, seasonal and irregular of thetransformed series ould be used to provide estimates of the trend, seasonal and irregularfor the original series. Although of interest, this approah has not been followed here.Rather we shall adopt a simpler strategy of approximating these funtions with simplenon{parametri linear �lters of funtions of the omponent series.3.1 Approximate deompositionsWe now onsider approximating T �t and S�t byT̂ �t = Xk kM(Tt; St�k) (14)Ŝ�t = Mt � T̂ �t (15)where the k are the oeÆients of a linear trend �lter LS that satis�esLS(Xt) =Xk kXt�k (Xk k = 1) (16)and LS also �lters out �xed annual seasonal patterns. If the �j(t), �j(t) are loallyonstant then this �lter is just the simple one{sided 12 month moving average. However,to allow for evolution in the �j(t), �j(t), other linear �lters based on the simple 12month moving average might better be employed in pratie. These inlude the standard12 month (13 point) entred moving average or the triangular 23 point moving averagewhere the non zero k are given byk = 12� jkj144 (k = 0;�1; : : : ;�11):8



In partiular, the latter �lter results if the �j(t), �j(t) are loally linear. Then it is nothard to show that T �t = 112 11Xk=0M(Tt; (1� k12)St�k + k12St+12�k)whih, using linear interpolation, should be well approximated by112 11Xk=0((1� k12)M(Tt; St�k) + k12M(Tt; St+12�k)) = 11Xk=�11 12� jkj144 M(Tt; St�k):The quality of this approximation is dependent on the smoothness of M(x; s) and theloseness of the values of St for the same month in suessive years. However it mightbe expeted that these would be quite reasonable approximations in pratie. Finallywe note that (12) is identially zero when M(x; s) is proportional to s, regardless of thelaw of evolution for the �j(t), �j(t). This leads to the onvention that LS(St) is set tozero when evaluating T̂ �t . These approximations and de�nitions are now used to de�nesuitable non{parametri approximations of T �t and S�t .Result 2 Let Yt follow the model spei�ed by (8) with additive deomposition given byDe�nition 1. Then the expressions (14) and (11) provide an approximate non{parametriadditive deomposition of Yt in ases other than the identity transformation model (1)with p = 0 and the X{11 model (5).Consider, for example, (1) and the ases p = 0 and p = 0:5. For the multipliative ase�(y) = log y andMt =  (1)eTt+St; T̂ �t =  (1)eTtLS(eSt); Ŝ�t =  (1)eTt(eSt � LS(eSt))with  (s) denoting the moment generating funtion of �t. In the ase of Gaussian errors (1) = exp 12�2 where �2 = E�2t . In the ase of the square{root transform (p = 0:5) wehaveMt = (Tt + St)2 + �2; T̂ �t = T 2t + LS(S2t ) + �2; Ŝ�t = 2TtSt + S2t � LS(S2t ):The funtional dependene of T̂ �t and Ŝ�t on Tt and St an now be utilised to onstrutestimates. In the simplest ase this means replaing Tt and St in (14) by their estimatesobtained from the transformed data using standard trend{seasonal deomposition proe-dures. The unknown �t parameters inMt are estimated from the estimated irregular of thetransformed data. Depending on the nature of the data, these partiular estimates ouldbe simple moment estimates or robust estimates that take proper aount of outliers. Inthe multipliative ase this proedure yields formulae that are losely related to thoseadvoated by Young (1968). For parametri Gaussian models suh as those advoated byAkaike (1980), Gersh and Kitagawa (1983), Harvey (1989), Ng and Young (1990), Mar-avall (1995) among many others, better estimates of Mt and T̂ �t an be obtained diretlyby determining EfMtjdatag; EfT̂ �t jdatag (17)9



using the relevant onditional densities determined from the Kalman �lter and smoother.Using this tehnology, on�dene limits an also be onstruted.Now onsider the ase where Yt follows (1) and �(y) is given by (3) or, more generally,by some other well{behaved funtion. In this ase omputationally simpler approximateproedures an be used provided St and �t are small.Result 3 Let Yt follow the model spei�ed by (1) where �(y) is some well{behaved funtion.Then T �t , S�t , ��t of De�nition 1 an be approximated by the simpler forms ~T �t , ~S�t , ~��trespetively where ~T �t = ��1(Tt + 12(Tt)(LS(S2t ) + �2))~S�t = ��1(Tt + St + 12(Tt)�2)� ~T �t (18)~��t = Yt � ~T �t � ~S�tprovided St and �t are small. Here(x) = ��(2)(��1(x))=(�(1)(��1(x)))2and �(j)(y) denotes the jth derivative of �(y). When �(y) is given by the power transfor-mation (3) (x) = ( 1 (p = 0)(p�1 � 1)=x (p 6= 0) : (19)The approximations given by Result 3 make simple additive adjustments to the trend ofthe transformed data and then bak{transform. Alternative approximations an also bedevised whih make additive adjustments in the original sale of the observations yieldingthe following result.Result 4 Let Yt follow the model spei�ed by (1) where �(y) is some well{behaved funtion.Then T �t , S�t , ��t of De�nition 1 an be approximated by the simpler forms �T �t , �S�t , ���trespetively where �T �t = ��1(Tt)(1 + 12Æ(Tt)(Tt)(LS(S2t ) + �2))�S�t = ��1(Tt)Æ(Tt)(St + 12(Tt)(S2t � LS(S2t ))) (20)���t = Yt � �T �t � �S�tprovided St and �t are small. HereÆ(x) = ddx log��1(x)and (x) is as given in Result 3. When �(y) is given by the power transformation (3)Æ(x) = ( 1 (p = 0)p�1=x (p 6= 0) : (21)
10



Note that in the ase of (3) and the identity transformation p = 1 the omponents givenby Results 3 and 4 are idential with those of De�nition 1. In the multipliative asewhere �(y) = log y~T �t = eTt+12(LS(S2t )+�2); ~S�t = eTt+12�2(eSt � e12LS(S2t ))and �T �t = eTt(1 + 12(LS(S2t ) + �2)); �S�t = eTt(St + 12(S2t � LS(S2t ))):If �(y) is the square{root transform (3) with p = 0:5 then~T �t = (Tt + 12(LS(S2t ) + �2)=Tt)2; ~S�t = (Tt + St + 12�2=Tt)2 � ( ~T �t )2and �T �t = T 2t + LS(S2t ) + �2 = T̂ �t ; �S�t = 2TtSt + S2t � LS(S2t ) = Ŝ�t :In the next setion the relative performane of these various proedures is investigated byanalysis of simulated and real data.In pratie the above will need to be modi�ed to handle alendar and holiday e�ets, andto inorporate robust estimation proedures to ope with outliers. The latter is diretlyaddressed by estimating Mt using the robustness weights derived when proessing thetransformed data. Calendar and holiday e�ets are typially modelled by adding in anextra �xed e�ets regression omponent to the right{hand side of (1). The regressors in-lude month length, numbers of eah type of week{day in the month and dummy variablesfor holidays. A similar development to that leading to De�nition 1 ould be undertakento de�ne appropriate additive omponents in the original sale of the observations. Whenmean orreted, these e�ets will typially be suÆiently small that they do not inuenethe de�nitions of trend and seasonal given by De�nition 1, at least to �rst order. Thus,in pratie, alendar and holiday e�ets an be safely removed from the transformed dataprior to forming the required omponents given by (14), (18) or (20).4 Numerial studiesIn keeping with Thomson and Ozaki (1992) the analysis and simulations undertaken inthis setion are based on a seletion of New Zealand oÆial series over the 12 year period1980 { 1991. The series onsidered are short{term visitor arrivals, merhandise tradeexports and merhandise trade imports.We �rst onsider the trends and seasonally adjusted series obtained from the New ZealandVisitor arrivals data using (1) with p = 0 and p = 0:5. The former is the more naturaltransformation although arguments an be advaned for both; indeed the power transfor-mation hosen by SABL was (3) with p = 0:25, a ompromise between the two alternatives.The e�ets of the orretions given in Setion 3 are illustrated in Table 1 where the meantrend bias gives the mean of the di�erenes between the X{11 trend and eah of the trendsgiven by ��1(Tt), (14), (18) and (20). Sine X{11 �ts the additive deomposition model11



Adjustment Mean Trend Bias Seasonal BalaneMethod p = 0 p = 0:5 p = 0 p = 0:5No orretion -2040 -1181 1957 985Equation (14) -47 -186 1 1Equation (18) -99 -186 53 -4Equation (20) -133 -181 1 1Table 1: Visitor arrivals to New Zealand by month; trends and seasonally adjusted seriesobtained using (1) with logarithm and square root transformations. The mean trend bias(by omparison to X{11) and the mean seasonal balane bias from zero are given for theorreted and unorreted series.(5) diretly without any orretion, its trend has been used as the basis for omparison.The mean seasonal balane bias measures the mean di�erene between the entred 12month (13 point) moving averages of the original and seasonally adjusted series. Here thetrend Tt and other omponents have been estimated from the transformed series �(Yt)using SABL. All measurements are in the original sale of the observations and the al-ulations have been arried out for the various orreted and unorreted series over theentral 10 year period to avoid ompliations with �lter end e�ets.The results in Table 1 indiate that, in the ase of strong seasonality, the orretionsare a marked improvement over the usual proedure of no orretion. There is little topik between the diret adjustment (14) and its approximations. As might be expeted,the unadjusted trend obtained using the square root transformation is better than thatobtained using the logarithm transformation. Moreover the orreted trend using the log-arithm transformation appears to be better than the orreted trend using the square roottransformation. However both orreted trends approximate the X{11 trend reasonablywell irrespetive of the transformation adopted. Thus the orretion proedure results intrends that are, to a large extent, invariant with respet to the transformation hosenWe now onsider analyses of three di�erent types of simulated series whose key parametersare given in Table 2. For eah type of series, 20 independent realisations of 12 yearsduration were generated using (1) with power p given by Table 2. The trends weredeterministi linear or quadrati funtions of time, the seasonal omponents were �xednon{evolutionary annual yles, and the irregular omponents were Gaussian white noise.All omponents were generated for the transformed series whih were then transformedbak into the original sale of the observations. The model parameters were hosenfollowing an analysis of the atual series onerned. However these analyses were used asa guide only and the parameters adopted provide, at best, an overly simplisti desriptionof the series onerned.The key parameters given in Table 2 are CV, the average oeÆient of variation in theoriginal sale of the observations, and SI, the seasonal to irregular ratio RMS(St)/� inthe transformed sale. Here �2 is the (onstant) variane of the irregular omponentand RMS(St) is the root mean square of the seasonal pattern over any 12 month period.Simulated exports and imports have a relatively high variability about the mean level of12



Simulated Series p CV SIVisitor Arrivals 0.0 0.05 5Exports 0.5 0.10 2Imports 0.0 0.10 1Table 2: Key parameters for series simulated using (1) with power p, oeÆient of variationCV and seasonal to irregular ratio SI.approximately 10%. Moreover, simulated exports have seasonal amplitudes approximatelytwie the size of the irregular whereas simulated imports have seasonal amplitudes ofapproximately the same size as the irregular. Thus, ompared to visitor arrivals, simulatedexports and imports represent situations where the use of orretion formulae should bemore marginal.The results are summarised in Figure 2. Here the standardised trend bias at a givenpoint in time t is de�ned as � �Tt=(s�T=p20) where � �Tt and s2�T are the sample mean andvariane respetively of the di�erenes between the 20 individual trend estimates (withand without orretion) and the true trend T �t . The latter is de�ned by (12) and evaluatedfor the true Tt, St and �. The standardised seasonal balane bias is de�ned similarly as� �St=(s�S=p20) where � �St and s2�S are the sample mean and variane respetively ofthe di�erenes between the 20 individual entred 12 month (13 point) moving averages ofthe original series and their seasonally adjusted forms. Thus the mean trend or seasonalbalane bias at any given time point has been measured in units of its own standarddeviation. As before, the results displayed relate to the entral 10 year period of the seriesto avoid possible end e�et ompliations. Only the results for the orretion proedure(14) have been displayed in Figure 2 sine the other proedures (18) and (20) produemuh the same results. The hoie of orretion proedure an thus be based on otherriteria suh as theoretial onsiderations and omputational onveniene.The results are self evident; the greater the variation about the trend the greater the gainsobtained from using the orretion formulae. Even in the ase of exports and importswhere the seasonal and irregular amplitudes are of modest size, there are still signi�antgains to be had. These remarks apply to both trend and seasonal balane biases.In the ase of the orreted trends, there remains a small downwards bias. This is mostlikely due to the fat that T �t has been estimated from (14) with Tt, St and �2 replaed byestimates from the deomposition of the transformed data. For parametri Gaussian basedmodels this problem might be alleviated to some extent by using (17) and the Kalman�lter. For models suh as X{11 whih are already in the appropriate additive form, noorretion formulae are needed and diret �tting of the omponents should be largelyfree of trend bias. Proedures that diretly �t the X{11 model inlude X{11{ARIMA,X{12{ARIMA or the parametri proedures of Ozaki and Thomson (2002). However, ingeneral, further orretions will be needed to eliminate estimation bias. This is beyondthe sope of the urrent paper. Finally note that the orretion proedures do not appearto inrease the variability of the trend estimates; indeed, if anything there might be aslight redution in variability. 13
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