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1 Introduction

National Statistical Institutes (NSIs) have the need to provide public-use mi-
crodata that can be used for analyses that approximately reproduce analyses
that could be performed on the non-public, original microdata. If microdata are
analytically valid or have utility (see [ 18]), then re-identification of confidential
information such as the names associated with some of the records may become
easier.

This paper describes methods for masking microdata so that it is better
protected against re-identification. The masking methods are rank swapping (
[ 13], also [ 5]), additive noise (] 8]), mixtures of additive noise ([ 14]). The re-
identification methods are based on record linkage ([ 6], also [ 16]) with variants
that are specially developed for re-identification experiments ([ 10], [ 18]). The
overall framework is based on variants of methods that score both information
loss and re-identification risk that were introduced by [ 5].

The outline of this paper is as follows. Section 2 covers the data files that
were used in the experiments. In section 3, we describe the masking methods, the
re-identification methods, and the variants of scoring metrics based on different
types of information loss and re-identification risk. Section 4 provides results. In
Section 5, we give discussion. The final section 6 consists of concluding remarks.

* This paper reports the results of research and analysis undertaken by Census Bureau
staff. It has undergone a Census Bureau review more limited in scope than that given
to official Census Bureau publications. This report is released to inform interested
parties of research and to encourage discussion.



2 Data Files

Two data files were used.

2.1 Domingo-Ferrer and Mateo-Sanz

We used the same subset of American Housing Survey 1993 public-used data that
was used by [ 5]. The Data Extraction System (http://www.census.gov/DES)
was used to select 13 variables and 1080 records. No records having missing
values or zeros were used.

2.2 Kim-Winkler

The original unmasked file of 59,315 records is obtained by matching IRS income
data to a file of the 1991 March CPS data. The fields from the matched file
originating in the IRS file are as follows:

. Total income

. Adjusted gross income
Wage and salary income

. Taxable interest income

. Dividend income

. Rental income

. Nontaxable interest income
. Social security income

. Return type

10. Number of child exemptions
11. Number of total exemptions
12. Aged exemption flag

13. Schedule D flag

14. Schedule E flag

15. Schedule C flag

16. Schedule F flag
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The file also has match code and a variety of identifiers and data from the
public-use CPS file. Because CPS quantitative data are already masked, we do
not need to mask them. We do need to assure that the IRS quantitative data are
sufficiently well masked so that they cannot easily be used in re-identifications
either by themselves or when used with identifiers such as age, race, and sex
that are not masked in the CPS file. Because the CPS file consists of a 1/1600
sample of the population, it is straightforward to minimize the chance of re-
identification except in situations where a record may be a type of outlier in the
population. For re-identification, we primarily need be concerned with higher
income individuals or those with distinct characteristics that might be easily
identified even when sampling rates are low.



3 Methods

The basic masking methods considered are (1) rank swapping, (2) univariate
additive noise, and (3) mixtures of additive noise. Record linkage is the method
of re-identification. The methods of information loss are those described by
Domingo-Ferrer et al. [ 5]. and some variants.

3.1 Rank Swapping

Rank swapping was developed by Moore [ 13] and recently applied by Domingo-
Ferrer et al. [ 5]. The data X is represented by (X;;), 1 <i <n,1 < j <k,
where 7 ranges through the number of records and j ranges through the number
of variables. For each variable j,1 < j < k, (X;;) is sorted. For each j, (X;;) can
be swapped with (X;;) where |j — I| < pn and p is a pre-specified proportion. The
programming needed for implementing rank swapping is quite straightforward.

3.2 Additive Noise

Kim [ 8] introduced independent additive noise & with covariance proportional
to the original data X so that Y = X +¢ is the resultant masked data. The term
¢ has expected value 0. He showed that the covariance of Y is a multiple of the
covariance of X and gave a transformation to another variable Z that is masked
and has the same covariance as X. He also showed how regression coefficients
could be computed and how estimates could be obtained on subdomains. His
work has been extended by Fuller [ 7]. In this paper, we will consider the basic
additive noise Y = X + ¢ as was also considered by Fuller. Masking via additive
noise has the key advantage that it can preserve means and covariances. Additive
noise has the disadvantage that files may not be as confidential as with some of
the other masking procedures. Kim [ 9] has shown that means and covariances
from the original data can be reconstructed on all subdomains using the observed
means and covariances from the masked data and a few additional parameters
that the data provider must produce. Fuller [ 7] has shown that higher order
moments such as the regression coefficients of interaction terms can be recovered
provided that additional covariance information is available. In most situations,
specialized software is needed for recovering estimates from the masked file that
are very close to the estimates from the original, unmasked file.

3.3 Mixtures of Additive Noise

Roque [ 14] introduced a method of masking of the form ¥ = X + ¢ where
¢ is a random vector with zero mean, covariance proportional to that of X,
and whose probability distribution is a mixture of £ normal distributions. The
number k& must exceed the dimension (number of variables) in the data X. The
total covariance of ¢ is such that the Cov(Y) = (1 + d) Cov(X) where d,0 <
d < 1, is pre-specified. The mean parameters of the component distributions are



solved by a nonlinear optimization method. With the empirical data used by
Roque, the bias in the individual component means have the effect of making
re-identification more difficult in contrast to re-identification when the simple
normal noise method of Kim is used.

In this paper, we provide a simpler computational approach using factoriza-
tion of Cov(X). The advantage is that no nonlinear optimization solver needs
to be applied. In fact the basic computational methods are a straightforward
variant of the methods used in [ 10]. The appendix gives more details.

Note that since additive noise preserves means p and produces a scalar in-
flation of the covariance matrix, we can rescale the masked data records y from
the masked data set Y by

so that the scaled data set Y’ has expected value mean p and Cov (Y') =
Cov (X).

3.4 Re-identification

A record linkage process attempts to classify pairs in a product space A x B from
two files A and B into M, the set of true links, and U, the set of true nonlinks.
Fellegi and Sunter [ 6] considered ratios R of probabilities of the form

_ Pr(y e M)
- Pr(yeI|U) @

where - is an arbitrary agreement pattern in a comparison space I'. For instance,
I" might consist of eight patterns representing simple agreement or not on sur-
name, first name, and age. Alternatively, each v € I' might additionally account
for the relative frequency with which specific surnames, such as Scheuren or
Winkler, occur or deal with different types of comparisons of quantitative data.
The fields compared (surname, first name, age) are called matching variables.
The numerator in (2) agrees with the probability given by equation (2.11) in [ 7]

The decision rule is given by:

1. If R > T}, then designate pair as a link.

2. If T\ < R <71, then designate pair as a possible link and hold for clerical
review.

3. If R < T\, then designate pair as a nonlink.

Fellegi and Sunter [ 6] showed that this decision rule is optimal in the sense
that for any pair of fixed bounds on R, the middle region is minimized over all
decision rules on the same comparison space I'. The cutoff thresholds, T}, and T},
are determined by the error bounds. We call the ratio R or any monotonically
increasing transformation of it (typically a logarithm) a matching weight or



total agreement weight. Likely re-identifications, called matches, are given higher
weights, and other pairs, called nonmatches, are given lower weights.

In practice, the numerator and denominator in (1) are not always easily esti-
mated. The deviations of the estimated probabilities from the true probabilities
can make applications of the decision rule suboptimal. Fellegi and Sunter [ 6]
were the first to observe that

Pr(yeI') =Pr(y € I'|M)Pr(M) + Pr(y € I'|U) Pr(U) (3)

could be used in determining the numerator and denominator in (2) when the
agreement pattern -y consists of simple agreements and disagreements of three
variables and a conditional independence assumption is made. The left hand side
is observed and the solution involves seven equations with seven unknowns. In
general, we use the Expectation-Maximization (EM) algorithm [ 1] to estimate
the probabilities on the right hand side of (3). To best separate the pairs into
matches and nonmatches, our version of the EM algorithm for latent classes [ 16]
determines the best set of matching parameters under certain model assumptions
which are valid with the generated data and not seriously violated with the real
data. In computing partial agreement probabilities for quantitative data, we
make simple univariate adjustments to the matching weights such as are done
in commercial record linkage software. When two quantitative items a and b
do not agree exactly, we use a linear downward adjustment from the agreement
matching weight to the disagreement weight according to a tolerance. For this
analysis, we experimented with two methods of weight adjustment. For the raw
data value a and the masked data value b, the d method adjustment is

Wagr — Wyis)|a — b
( agr dzs)‘ },wdis),

Wadj = max({?ﬂadj - tmax(|a‘ ,01)

and the [ method adjustment is

Waor — Wais )| loga — log b
(Wag dis)|log g }7%5)7

Wagj = max({wadj - tmax (|logal,0.1)

where Wagj, Wagr, Wdis are the adjusted weight, full agreement weight, and full
disagreement weights, respectively and ¢ is the proportional tolerance for the
deviation (0 <t < 1). The full agreement weights w,, and disagreement weights
wgyis are the natural logarithms of (2) that are obtained via the EM algorithm.
The approximation will not generally yield accurate match probabilities but
works well in the matching decision rules as we show later in this paper. Because
we do not accurately account for the probability distribution with the generated
multivariate normal data, our probabilities will not necessarily perform as well
as the true probabilities used by Fuller when we consider single pairs. We note
that the d method is basically a natural linear interpolation formula based on
the distance between the raw and masked values. The [ method was originally
devised by Kim and Winkler [11] for multiplicative noise masking, but it has
proven generally more effective than the d method for the additive noise case.
This is probably because the most identifiable records are the ones containing



large outlier values, and the [ method tends to downweight less than the d method
when both the input values are large.

To force 1-1 matching as an efficient global approach to matching the entire
original data sets with the entire masked data sets, we apply an assignment
algorithm due to [ 16]. Specifically, we use pairs (i, ) € Iy where I is given by

Iy = min ZwijICJ )
(i.5)el

where w;; is the comparison weight for record pair (7, j), and J is the set of
index sets I in which at most one column and at most one row are present.
That is, if (¢,7) € I and (k,l) € I, then either ¢ # k or j # [. The algorithm
of Winkler is similar to the classic algorithm of Burkard and Derigs (see e.g.,
[ 16]) in that it uses Dijkstra’s shortest augmenting path for many computations
and has equivalent computational speed. It differs because it contains compres-
sion/decompression routines that can reduce storage requirements for the array
of weights w;; by a factor of 500 in some matching situations. When a few
matching pairs in a set can be reasonably identified, many other pairs can be
easily identified via the assignment algorithm. The assignment algorithm has the
effect of drastically improving matching efficacy, particularly in re-identification
experiments of the type given in this paper. For instance, if a moderate number
of pairs associated with true re-identifications have probability greater than 0.5
when looked at in isolation, the assignment algorithm effectively sets their match
probabilities to 1.0 because there are no other suitable records with which the
truly matching record should be combined.

The proportion re-identified is the re-identification risk (PLD),computed us-
ing an updated version of the probabilistic re-identification software that has
been used in [ 10], [ 14], and [ 5]. Domingo-Ferrer et al [ 5] also used distance-
based record linkage (DLD) for situations in which Euclidean distance is used.
DLD can be considered a variant of nearest-neighbor matching. Because this
DLD is highly correlated with record linkage [ 5], we only use PLD. Domingo-
Ferrer et al. also used interval disclosure (ID) that we do not believe is appro-
priate because it is far too weak a disclosure-risk. See [ 5] for a definition of
ID.

For the two data sets examined below, we counted the number of re-identified
matches used to compute the re-identification risk somewhat differently. For
the Domingo-Ferrer data, since the data set is small, we counted all of the
correct matches in the set of linked pairs reported by the record linkage software.
For the larger Kim-Winkler data set, a more realistic count of correctly re-
identified matches is given by counting matches with agreement weights above
a cutoff value T),, where the rest of the correct matches in the file are scattered
sparsely among a large number of incorrect match pairs. In practice, these
sporadic matches would not be detectable and their inclusion would produce an
intolerably high false match rate.



3.5 Information-Loss and Scoring Metric

In [ 5] a number of formulas are suggested for measuring the “information loss”
or amount which the masked data set has been statistically altered from the
original raw data set. The idea is to compute some kind of penalty score to
indicate how much the masked data set statistically differs from the original.
The problem becomes one of identifying what one considers to be significant
statistical properties and then to define a way to compute their difference for
two data sets.

For original data set X and masked data set Z, both n x m arrays, one might
want to consider a measure of the change in data, i.e. a measurement for Z — X.
The original suggestion was for something like

3

]11

n
‘Iz 1%ij — Zig| |
1

|5

but this is undefined whenever we have an original data element x;; = 0. One
can replace the denominator by a specified constant when z;; = 0, but then the
value of this score can vary greatly with the choice of constant, especially when
the data set has a lot of zero elements, as in the Kim-Winkler data. Furthermore,
the size of this data perturbation score tends to be several orders of magnitude
larger than the other information loss scores described below, so that it totally
dominates all of the other scores when they are combined. Initially we tried to
improve this situation by modifying the above formula to

|zi; — i
Il = — _—
2205 (Jzij| + |2i5])

7j=11i=1

which helps with the score magnitude problem, since it is now bounded by L1 <
2, but it only reduces but does not eliminate the possibility of dividing by zero.
However, beyond these problems, by scaling the statistic by the individual data
points, the resulting statistic is not very stable. Leaving aside zero data values,
when the data values are very small, then small adjustments in the masked
data produce large effects on the summary statistic. If we view our data set as
independent samples from a common distribution, it is more stable to measure
variations in the sample values by scaling them all by a value common to the
variable. Thus if X and Z are independent random variables both with mean
p and variance o2, then the random variable Y = X — Z has mean 0 and
variance 202. Hence a common scale for Z would be its standard deviation v/20.
In our case, we can estimate that standard deviation with the sample standard
deviation S. This motivates the proposed modification for the data perturbation
information loss statistic given by

n

1 T 1, ?,
ILls—%;lz:mj y]‘.

1



This uses a common scale for all values of the same variable in the data set, the
denominator is not zero unless the values of the variable are constant throughout
the data set, and while the statistic does not have an a priori upper bound,
the values in our empirical studies tend to be closer in magnitude to the other
information loss statistics.

In summary we would suggest one of two approaches for a data perturbation
score in the context of information loss measures for masked data sets. One
approach would be to leave it out entirely. If the ideal of data masking is
to try to preserve statistical properties of a data set while making individual
records difficult to identify, when we are trying to assess the degree to which the
statistical properties are preserved, perhaps we should not include a measure of
how much individual records have been perturbed. The other approach, if one
does want to include such a measure, then it would be better to use a more
uniform and intrinsic scaling method, such as in IL1s.

The other information loss statistics that we compute are the same as some
of those suggested by Domingo-Ferrer. To measure the variation in the sample
means, we compute

1175 — 94l
112 = — ——
In theory, this score could also have the problem of zero or relatively small de-
nominators, but since the sample means for our data sets are summary statistics
for nonnegative whole real numbers, this did not seem to be a problem.
For variations in the sample covariance matrix, we compute

j (cov (X),5 — Cov (Y),

2 m
T = ) 2

j=1k=1 ‘COV (X)jk’

for variations in the sample variances, we compute

1 m
IL4:EZ

ot ’Cov (X)

Jj

|Cov (x),; = Cov (¥)

Ji

and for variations in the sample correlation matrix, we compute

=

j7

9 m
IL5 = m;; ’COI‘(X)]/C *COI’(Y)]]C

We wish to combine these information loss statistics into a summary infor-
mation loss score. While it’s not clear what sense it really makes to combine
these numbers, and even if we do, its not clear what appropriate weighting we
should give to them, in the absence of deeper insight, we just compute a straight
average. However, we may choose which statistics we wish to include. As we
have noted, the data perturbation measure IL1 is somewhat numerically prob-
lematic. Moreover, for the purposes of data masking, it is not clear if one cares



how much individual data records are perturbed as long as the overall statistical
structure of the data set is preserved. Thus one information loss penalty score
can be computed by leaving out IL1 to get

_ IL2+IL3+IL4+1L5
- y :

s0

On the other hand, one can leave it in to get

1— IL1+TL2+ 103+ 104+ 1L5
= z .

Another objection to combining all theses scores is that IL3, IL4, and IL5
are redundant. With the covariance, variance, and correlation, if we know two
of these things, then we know the third. Furthermore, the covariance score IL3
is to a lesser degree subject to the same kind of scaling instability as found
with TL1, namely that the smallest values make the largest contributions to
the score. In particular, we observe that the score tends to be dominated by
those components corresponding to the smallest correlations. Thus as an alter-
native summary information loss statistic, we suggest using the rescaled data
perturbation score and leaving out the covariance score to get

o ILls+IL2 4 IL4 + ILS
- y :

For comparison purposes, for the empirical results, we combine each of these
information loss scores with the re-identification score reid, as discussed in Sec-
tion 3.4 to obtain an overall data masking score. Specifically, the resulting scores
are given by

Ascore = 100 (M)
Dscore = 100 (M)
Sscore = 100 (W)

4 Results

4.1 Domingo Data Statistics

The Domingo data set consists of 1080 records from which we have masked 13
real variables. We can observe in Table 1 how the information loss scores increase
with increasing noise level d. Rescaling the masked data has no mathematical
effect on the mean and correlation. Since the rescaling somewhat contracts the
data, there tends to be some decrease in the data perturbation scores. The effects
of rescaling are most significant in the covariance and especially the variance
scores.



Table 1. Domingo Data Information Loss Statistics

IL1 IL1s IL2 IL3 IL4 IL5 sO sl  s2
rnkswp05 0.129 0.091 0.000 0.130 0.000 0.016 0.036 0.055 0.027
rnkswp10 0.219 0.155 0.000 0.195 0.000 0.036 0.058 0.090 0.048
rnkswp1ld 0.294 0.208 0.000 0.224 0.000 0.070 0.073 0.118 0.069
add01 0.194 0.137 0.001 0.036 0.014 0.002 0.013 0.038 0.039
add10 0.371 0.263 0.004 0.168 0.115 0.007 0.073 0.114 0.097
mixadd01 0.204 0.063 0.002 0.028 0.012 0.002 0.011 0.050 0.020
mixadd05 0.326 0.140 0.004 0.088 0.053 0.004 0.037 0.095 0.050
mixadd10 0.398 0.199 0.006 0.152 0.105 0.005 0.067 0.133 0.079
mixadd20 0.489 0.281 0.008 0.273 0.207 0.007 0.124 0.189 0.126
scalmixadd01 0.202 0.063 0.002 0.021 0.003 0.002 0.007 0.046 0.017
scalmixadd05 0.316 0.137 0.004 0.048 0.007 0.004 0.016 0.076 0.038
scalmixadd10 0.379 0.190 0.006 0.067 0.010 0.005 0.022 0.093 0.053
scalmixadd20 0.449 0.258 0.008 0.095 0.014 0.007 0.031 0.114 0.072

The matching software has two methods, the d method and the [ method as
discussed in Section 3.4 for measuring agreement between two real values. In
either case, it interpolates between the agreement weight and the disagreement
weight. In Table 2, we see that when the perturbations are small, the d method
does a little better than the [ method. However, when the perturbations get
large, the I method is better able to see past moderate perturbations to large
values.

The re-identification software produces a list of linked pairs in decreasing
matching weight. For this small data set, the re-identification rate is computed
as the total number of correctly linked pairs out of the total number of records
in the data file. This is a rather optimistic re-identification score since most of
the true matches are mixed among many false matches, and an analyst would
probably have difficulty picking many of them out. In any event, we can see that
for this data set with so few records and so many matching variables, a 1% noise
level does not provide adequate masking, but the re-identification rate drops off
rapidly with increasing noise level.

For an overall data masking score, we combine the information loss score
with the re-identification score. Since we computed three data loss scores, we
compute three overall scores in Table 3.

4.2 Kim-Winkler Data Statistics

The Kim-Winkler data consists of 59,315 records each containing 11 real vari-
ables for income data. In Table 4 we show the information loss statistics for
our additive mixed noise masking for the whole data set. We note that the L1
date perturbation statistic tends to higher than that for the Domingo data, pos-
sibly due to the large number of zero entries in the Kim-Winkler data, whereas
the IL1s data perturbation metric is about the same as for the Domingo data.



Table 2. Domingo Data Reidentification Rates

d metric [ metric

rnkswp05
rnkswpl0
rnkswpl)
add05

add10

mixadd01
mixadd05
mixadd10
mixadd20

0.8861
0.2694
0.0491
0.7972
0.2296
0.7667
0.1482
0.0574
0.0139

scalmixadd01 0.7704
scalmixadd05 0.1602
scalmixadd10 0.0648
scalmixadd20 0.0269

0.9620
0.7287
0.3444
0.7500
0.3167
0.7176
0.3556
0.2194
0.1009
0.7370
0.3537
0.2417
0.1241

Table 3. Domingo Data Scoring Metrics

d Metric [ Metric

Ascore Dscore Sscore Ascore Dscore Sscore
rnkswp05 46.11 47.06 46.66 49.90 50.85 49.45
rnkswpl0 16.37 17.97 15.87 39.34 40.94 38.84
rnkswp15 6.11 8.36 5.91 20.87 23.12 30.67
add01 40.51 41.76 41.81 38.15 39.40 39.45
add10 15.13 17.18 16.33 19.49 21.54 20.69
mixadd01 38.88 40.81 39.31 36.42 38.36 36.86
mixadd05 9.27 12.16 9.93 19.64 22.53 20.30
mixadd10 6.22 9.53 6.80 14.32 17.63 14.90
mixadd20 6.88 10.13 6.98 11.23 14.48 11.33
scalmixadd01 38.95 40.90 39.46 37.21 39.16 37.72
scalmixadd05 8.94 11.94 10.06 18.47 21.47 19.59
scalmixadd10 4.43 8.00 5.97 13.19 16.75 14.73
scalmixadd20 2.89 7.06 4.94 7.75 11.92 9.80



Table 4. Kim-Winkler Data Information Loss Statistics, 11 Variables

IL1 IL1s IL2 IL3 IL4 IL5 sO sl  s2
mixadd01 1.165 0.060 0.002 0.014 0.010 0.000 0.007 0.238 0.018
mixadd05 1.308 0.135 0.005 0.056 0.051 0.001 0.028 0.284 0.048
mixadd10 1.381 0.191 0.007 0.106 0.101 0.001 0.054 0.319 0.075
mixadd20 1.457 0.270 0.010 0.201 0.201 0.002 0.104 0.374 0.121
scalmixadd01 1.163 0.060 0.002 0.008 0.001 0.000 0.003 0.235 0.016
scalmixadd05 1.302 0.132 0.005 0.018 0.002 0.001 0.006 0.265 0.035
scalmixadd10 1.370 0.183 0.007 0.025 0.002 0.001 0.009 0.281 0.048
scalmixadd20 1.438 0.249 0.010 0.033 0.003 0.002 0.012 0.297 0.066

Table 5. Kim-Winkler Data Information Loss Statistics, 8 Variables

IL1 IL1s IL2 IL3 1IL4 IL5 sO sl  s2
rnkswp05 0.174 0.123 0.000 0.525 0.000 0.197 0.180 0.179 0.080
rnkswp10 0.280 0.198 0.000 0.609 0.000 0.211 0.205 0.220 0.102
rnkswpld 0.362 0.256 0.000 0.605 0.000 0.214 0.205 0.236 0.118
add01 1.271 0.897 0.006 0.018 0.009 0.019 0.013 0.331 0.235
add01_sw  1.286 0.909 0.006 0.018 0.009 0.009 0.013 0.335 0.232
mixadd01 1.304 0.061 0.003 0.012 0.010 0.000 0.006 0.266 0.019
mixadd05 1.443 0.137 0.006 0.052 0.051 0.001 0.027 0.311 0.049
mixadd10 1.512 0.194 0.008 0.101 0.101 0.001 0.053 0.345 0.076
mixadd20 1.582 0.274 0.012 0.199 0.201 0.002 0.103 0.397 0.122
scalmixadd01 1.302 0.061 0.003 0.005 0.001 0.000 0.002 0.262 0.016
scalmixadd05 1.437 0.134 0.006 0.011 0.002 0.001 0.005 0.291 0.037
scalmixadd10 1.503 0.185 0.008 0.015 0.002 0.001 0.007 0.306 0.049
scalmixadd20 1.567 0.252 0.012 0.020 0.003 0.002 0.009 0.321 0.067

In general the scaled data tends to get better results reducing the covariance
measures I L3, IL4 than in the Domingo data case.

For our re-identification, we only used eight of the income variables, so we
computed the information loss scores based on just these eight variables. In Table
5, they show a generally slight increase over the eleven variable scores. For the
re-identification scores, we computed the proportion of correctly linked pairs out
of the total number of records, as in the case of the Domingo data. In this case,
we only compute the results using the [ interpolation metric in Table 6, since it is
much more effective on this data. However, reporting the total number of correct
matches in the full link file is probably even more misleadingly optimistic than
in the Domingo data case. For the Domingo data, the true matches tend to be
distributed throughout the link file. As the noise level of the masking increases,
this distribution becomes more sparse and random. In the case of this data set,
there are twenty or so records that are extreme outliers with one or more income
categories much higher than the values for the mass of the records. Many of



Table 6. Kim-Winkler Data Reidentification Rates, [ Metric

Total File Matches 20% Zone

rnkswp05 0.8032 0.8032
rnkswpl0 0.6072 0.6072
rnkswpl) 0.4855 0.4855
add01 0.0590 0.0420
add0l sw 0.0010 0.0000
mixadd01 0.0841 0.0960
mixadd05 0.0346 0.0027
mixadd10 0.0240 0.0018
mixadd20 0.0149 0.0011
scalmixadd01 0.0844 0.0098
scalmixadd05 0.0355 0.0031
scalmixadd10 0.0249 0.0022
scalmixadd20 0.0174 0.0016

these records fail to be successfully masked from the re-identification through
most noise levels, especially using the [ metric. Thus there are always several
clearly true matches at the top of the match-weight sorted link file. However,
as the matching weights decrease, the proportion of true matches rapidly drops
off as we include more and more false links in with a decreasing number of true
matches. Thus is seems reasonable to cut off the count of true matches at some
point, since beyond this point, any true matches will only appear sporadically
among the preponderance of false matches and are unlikely to be discerned by
the analyst. Here we choose a rather low cutoff point of 20%. This means
that at this point, the number of linked pairs at this matching weight or higher
contain 20% true matches and 80% false links. Below this point, the true matches
become much rarer. In Table 7 are the overall data masking scores for the Kim-
Winkler data. The data masking tends to be more effective here, especially at
lower additive noise levels. Again inclusion of the IL1 data perturbation score
tends to dominate and obscure the rest of the results.

Subpopulation Information Loss Statistics The additive noise procedures
are supposed to preserve means and covariances on arbitrary subpopulations,
at least when these statistics are properly corrected, according to the method
of Kim [ 9]. In Tables 8 and 9 we compute the information loss scores for two
subpopulations. We see that even for the corrected means and covariances, there
are still generally somewhat higher scores than for the full data set. We especially
note that the scaled data sets fail to recover the original data covariance and
variance values as well.

In Table 9 we see slightly better information loss scores for a slightly larger
subpopulation.



Table 7. Kim-Winker Data Scoring Metrics

Full File Matches

20% Zone Matches

Ascore Dscore Sscore Ascore Dscore Sscore

rnkswp05 98.35
rnkswpl0 81.23
rnkswplh 69.03
add01 3.60
add01_sw 0.70
mixadd01 4.52
mixadd05 3.10
mixadd10 3.85
mixadd20 5.92

scalmixadd01l  4.33
scalmixadd05  2.02
scalmixadd10  1.58
scalmixadd20 1.33

98.21
82.72
72.17
19.50
16.80
17.49
17.26
18.44
19.45
17.33
16.35
16.54
16.91

88.32 98.35
70.94 81.23
60.81 69.03
14.70  2.75
11.65 0.65
5.14  0.80
416 1.51
5.00 2.74
6.78  5.23
5.03 0.60
3.62  0.40
3.71 045
4.22 049

98.21
82.72
72.17
18.75
16.75
13.77
15.66
17.33
18.76
13.60
15.45
15.41
16.12

88.32
70.94
60.81
13.85
11.60
1.41
2.57
3.84
6.09
1.30
2.00
2.58
3.43

Table 8. S4 Return Type Information Loss, 8 Variables, 5885 Records

IL1 IL1s IL2

rnkswp05
rnkswpl0
rnkswpl)
add01
add_sw01
mixadd01
mixadd05
mixadd10
mixadd20

0.199 0.141 0.397
0.277 0.196 0.151
1.364 0.964 0.027
1.364 0.964 0.027
1.399 0.246 0.057
1.559 0.550 0.128
1.631 0.777 0.181
1.697 1.099 0.256

scalmixadd01 1.397 0.245 0.057
scalmixadd05 1.552 0.536 0.128
scalmixadd10 1.621 0.741 0.181
scalmixadd20 1.681 1.004 0.256

1L3 IL4 IL5 0 sl s2
0.114 0.081 1.407 39.020 158.950 0.123 48.875 39.923 40.141
1.682 3.9800.179 1.560 1.287 1.174
0.918 0.799 0.174 0.511 0.464 0.330
0.343 0.240 0.017 0.156 0.398 0.312
0.343 0.240 0.017 0.156 0.398 0.312
0.101  0.008 0.006 0.043 0.314 0.079
0.232 0.024 0.014 0.099 0.391 0.179
0.342 0.040 0.021 0.146 0.443 0.255
0.539 0.069 0.033 0.224 0.519 0.364
0.130  0.008 0.006 0.050 0.320 0.079
0.298 0.024 0.014 0.116 0.403 0.175
0.440 0.040 0.021 0.170 0.460 0.246
0.693 0.069 0.033 0.263 0.547 0.341



Table 9. Schedule C Subset Information Loss, 8 Variables, 7819 Records

IL1 IL1s IL2 IL3 1IL4 IL5 sO sl  s2
rnkswp05 0.207 0.146 0.082 0.711 0.523 0.250 0.391 0.355 0.250
rnkswp10 0.322 0.228 0.125 0.796 0.573 0.261 0.438 0.415 0.297
rnkswp1ld 0.410 0.290 0.126 0.765 0.473 0.266 0.408 0.408 0.299
add01 1.221 0.863 0.013 0.021 0.017 0.003 0.013 0.255 0.224
add01_sw  1.250 0.884 0.057 0.431 0.296 0.084 0.217 0.424 0.330
mixadd01 1.410 0.220 0.012 0.065 0.009 0.005 0.023 0.288 0.062
mixadd05 1.560 0.492 0.027 0.175 0.026 0.012 0.060 0.360 0.139
mixadd10 1.627 0.696 0.038 0.299 0.043 0.019 0.100 0.405 0.199
mixadd20 1.688 0.984 0.054 0.531 0.075 0.030 0.172 0.476 0.286
scalmixadd01 1.408 0.219 0.012 0.084 0.009 0.005 0.028 0.304 0.061
scalmixadd05 1.553 0.480 0.027 0.225 0.026 0.012 0.073 0.369 0.136
scalmixadd10 1.617 0.664 0.038 0.385 0.043 0.019 0.121 0.420 0.191
scalmixadd20 1.674 0.899 0.054 0.682 0.075 0.030 0.210 0.503 0.265

5 Discussion

For the research community, there are two general difficulties with comparing
masking methods. The first is that the suitable test files are needed. The test
files should have variables in which the distributions are representative of actual
databases. Some of the test files should have quite skewed distributions. Others
should have a large number of zeros for several of the variables The second is
that the information-loss metrics should be reasonably robust across different
types of databases. We observed that some of the metrics that we have used in
this paper are sensitive to the skewness of distributions and the proportions of
zeros associated with a variable.

Much of prior research (e.g., [ 8], [ 7], [ 10]) dealt with situations where only
a few specific analyses were demonstrated to be approximately reproduced with
a masked data file. In most of the situations, special software was needed to do
many of the analyses, particularly on subdomains. If masked files are required to
reproduce more than one or two sets of analyses from original, unmasked data,
then we suspect the special methods and software will be typically needed.

6 Concluding Remarks

This paper provides a comparison of rank swapping with various methods of ad-
ditive noise. In the comparison of [ 5], rank swapping provided the best trade-off
between information-loss and disclosure risk with measures used in the earlier
work. With the same data and the same metrics, rank swapping provides better
results than the types of mixtures of additive noise that we provide in this paper.
With other, much larger data [ 10] that represents actual public-use situations,
scaled mixtures of additive noise perform best with the same scoring metrics.



For the scoring methods used here, using scaled masked data produces improved
scores since the information loss scores are improved by better covariance agree-
ment while the re-identification risk is only slightly worse. This suggests that
additional scoring metrics and more applications to different data situations are
needed. The scoring metrics, particularly the components of information loss,
need to be better connected to additional analyses and specific characteristics of
data.
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8 Appendix: Additive Mixture Noise Methodology

As in the case of normal additive noise, to the given raw data set X, an n x m
array, we wish to produce a masked data set Z by adding a masking noise array
Y

Z=X+4+dY

where the records of Y are independent samples of a distribution with zero
mean and Cov (Y) = Cov(X) = X¥. Typically for additive noise we chose a
normal distribution N (0, X); for mixture noise we may choose a normal mix-
ture distribution Zszl wi N (0, X)). For a probability distribution, the weights
are constrained so that Zle wr = l,wg > 0. To obtain zero mean, we must
have Zszl wilr, = 0. When we choose Y = o1, for K > m, in general to
obtain total covariance X, the component means 05 must further satisfy a (un-
derdetermined) system of quadratic equations that can be solved numerically,
as addressed in [ 14]. However, it is computationally simpler to produce colored
noise from white noise. That is, if X Iisa square root of the positive definite
symmetric matrix X,
$=5 (ﬁ)T

and w is an uncorrelated random vector with mean 0 and identity covariance I,
then the random vector y,

1
y=2X2w

has mean 0 and covariance Y. To produce w, we need m independent components

w; of mean 0 and variance 1. For standard normal additive noise, we can choose

each w; to be distributed as w; ~ N (0,1); for mixture distribution noise, we
may choose each w; to be distributed as

K
wj ~ ZwkN (Gk,og)
k=1

for some choice weights and common variance o2 < 1. Such a mixture distribu-
tion has mean Zszl wiBy, and variance o2 + Zszl wi#?2. To obtain component



means 0 so that the mixture distribution has mean 0 and variance 1, we can

start out with arbitrary numbers 11,9, ..., % _1 and let
| Kol
=—— w
Y o ; KUk

and compute

K
S = Z wkE
=1

and let
1—02
9 fr—
k 5 Y
The simplest case occurs when we choose the weights wy, to be equal and the
smallest number of components K = 2. In this case we have §; = v/1 — 2 and
05 = —v/1 — 02. The mixture distribution

%N (\/ 1- 02,02) + %N (—\/1 - 02,02)

differs most from the standard normal distribution when we choose a value of
o2 near 0, where we get a bimodal distribution with modes near +1. A weakness
of using standard normal additive noise for masking is that most samples from
the distribution tend to be near zero and hence produce small perturbation to
the data. In this simplest mixture model, samples from the distribution tend
to be near either 1 or —1, and thus should produce a more substantial data
perturbation. For the data masking for these empirical studies, we used a value
of 0% = 0.025.

Using this uncorrelated, zero mean mixture distribution, we generated a data
set

wi
wg

W =

syt

w

where each vector w; is drawn from the above zero mean, identity covariance
mixture distribution. Using a square root Xz of the sample covariance matrix
of X, we compute a colored noise data set

T
(Z%wl)

. T
Y — (ZM}?)

) T
(540,



and for different noise proportion parameters d, we compute a masked data set
Z=X+dY.

Since the resulting data set Z theoretically has covariance (1 4 d) X, for each d
we also compute a scaled masked data set Z, related by

Zs =

1 1
41— ——
td ( \/1+d)”

where p is the (sample) mean vector of the masked data.



