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I. INTRODUCTION  

 
This report discusses the quality and usefulness of estimates from the planned 

American Community Survey (ACS), for very small populations groups. The 

ACS is intended to replace the long form survey in the 2010 census. Since the 

long form is unique as a source of information about small population groups, the 

top objective of the ACS design has been to provide good information about the 

smallest groups. 

 

The general premise of the ACS design is that by spreading the “long form” 

sample across the decade, it is possible to provide updated information for all 

sizes of population groups. In principle, this should be especially advantageous 

for small population groups, because there is currently very little information 

about how these populations change over time. Also, the ACS is expected to have 

more consistent quality because of the advantages of a continuous operation, 

which is especially important for small, “hard-to-enumerate groups. 

 

However, concerns have been expressed about the quality of ACS estimates for 

very small population groups. These concerns are described in Section III, with 

responses in subsequent sections. We have described the ACS as replacing the 

long form “snapshot” with a “video”. Using this metaphor, the most widespread 

concerns are 1) that a “freeze frame” from the video is not as clear as a snapshot, 

and 2) that if the subject of the picture is small and fast-moving, the video may 

show a blur.  

 



The response is, continuing the metaphor, that the freeze frame is almost as clear 

as the snapshot, and provides the advantage of being able to look at a freeze frame 

at any time. For fast-moving subjects, a video at least tells you that the subject is 

moving and in what direction, while a snapshot misses the action totally. Small 

population groups have the potential to change more dramatically than larger 

groups, so having a “video” is most valuable for small groups. 

 

Sections I through V, along with Appendix 1, present the basic issues. Section VI 

and Appendix 2 provide some additional details. Appendix 3 points out some 

more complex statistical issues, which are not mentioned in the body of the report 

to keep the discussion simpler. 

 

Comments on topics where the report may not have effectively explained the 

issues are welcome. There may be subsequent revisions of the report based on 

discussions with the Census Bureau Advisory Committees, or as new information 

is available from evaluations of the ACS and comparisons to Census 2000. 

 

II.          BACKGROUND ON THE OPERATIONS AND DESIGN OF THE AMERICAN 

COMMUNITY SURVEY  

 
The ACS is part of a plan to re-engineer the 2010 census. Besides replacing the 

long form with the ACS, the plan includes modernizing the MAF/TIGER 

geographic systems, and early planning and research to design better and more 

accurate ways to count the population in 2010.  

 



The ACS plan is to start in 2003, with an annual sample of 3 million addresses 

spread across the list of addresses in each census tract, covering all places (such 

as cities or towns), American Indian Reservations, Alaska Native villages, and 

Hawaiian Homelands. About 250,000 addresses will be contacted for the first 

time each month. No address will be in sample more than once in a 5-year period; 

most addresses can expect to go about forty years between ACS interviews. 

  

Most addresses in the sample start out with a mail questionnaire in their first 

month, with a prenotice, a reminder card, and a targeted second mailing. In the 

second month, nonresponding addresses for which a telephone number is 

available are followed-up by a Computer-Assisted Telephone Interviewing 

(CATI) operation. In the third month a one-in-three sample of addresses which 

have still not responded are selected for follow-up by Field Representatives who 

use Computer-Assisted Personal Interviewing (CAPI). Mail responses with 

substantial amounts of missing data are designated for recontact by telephone in a 

“failed edit follow-up” operation. Units for which there is no usable mailing 

address skip the mail and CATI phases. A two-in-three sample of these units go 

straight to CAPI. 

 

The combined effect is that the ACS will sample about 30 million addresses over 

a 10-year period, resulting in about 21.9 million interviewed housing units. This 

compares to about 19.2 million addresses in the Census 2000 long form sample. 

 



Small governmental units will be sampled at a higher rate, depending on the 

population of the area, as was done for the last three census long form samples. In 

particular, the smallest governmental units will be sampled at a rate of 10 percent 

per year. Addresses in large census tracts sampled at a somewhat lower rate, 

except if they are, in a small governmental units. 

 

The survey designers are considering a plan to oversample census tracts which 

have much lower-than-average mail response rates, by having a greater than one-

in- three CAPI followup rate in those areas. To make up for this, the initial 

sampling rate would be reduced slightly in tracts with above-average mail 

response rates. Options for doing this are being discussed with stakeholders, for 

possible implementation during 2003. 

 

A Puerto Rico Community Survey with similar design and sampling rates, is 

planned starting in 2003, pending congressional funding. 

 

A crucial part of the ACS message is that the ACS provides the characteristics of 

the population, not counts. The census will continue to provide a complete count 

of the population every ten years. In the intercensal years, the official number of 

people will continue to come from the intercensal demographic estimates 

program, as part of the Federal/State Cooperative Population Estimates (FSCPE) 

program. However, information from the ACS will be used to improve these 

population estimates; research has begun on these improvements and how to 

implement them as a Program of Integrated Estimates.” 



To replace the long form estimates, the ACS will produce annually updated 5-

year average  estimates for geographic areas down to the block group level. For 

example, in 2008 there will be a set of tables, and public-use microdata files, 

covering the period 2003-2007. In  2009, the updated estimates will cover 2004-

2008, and so forth. Each 5-year average may be thought of as replacing a 

hypothetical census long form in the middle year; for example, the 2003-2007 

average would correspond to a “2005 long form estimate.” The 2008-2012 

average is the one most closely corresponding to the 2010 time period. These 5-

year averages are the most important ACS data product for small population 

groups. 

 

The ACS will also produce 3-year averages and 1-year average estimates. For 

large areas and population groups, meaning over 20,000 population for 3-year 

averages and 65,000 population for 1-year averages, these averages will be 

regularly available for the full range of tables. 

 

 For smaller areas and population groups, 3-year and 1-year averages will be 

available in a different format, possible a SAS file, “for research purposes”. These 

research purposes include statistical analyses such as time series modeling or 

multiple regression analyses which pool information from a number of areas.  

These data will also be useful for “multi-year average interpretation”, in other 

words for studying in more detail the changes that take place within a 5-year 

average. Note that below the 20,000 and 65,000 thresholds, the 3-year and 1-year 



averages for individual areas have high standard errors and are only useful for 

detecting large changes. 

 

III. A SPECIAL CASE: “COUNTS” OF RACE/ETHNIC GROUPS INCLUDED ON THE 

SHORT FORM 

 
For the race and ethnic groups included on the census short form, if the interest is 

in knowing the number of people in the group, then the ACS offers clear 

advantages. This includes not only the broad groups such as “Asian”, “Hispanic”, 

or “American Indian or Alaska Native”, but detailed subgroups such as “Korean”, 

Puerto Rican”, or specific American Indian tribes. 

 

The reason is that the ACS plan still includes a 100 percent enumeration every 10 

years with a short form, so the counts of these groups will be collected in the 

census as always.  In addition, the ACS will provide sample-based estimates of 

changes in the size of these population groups during the decade. This 

information will be incorporated into the intercensal population estimates 

program to improve the accuracy of the intercensal estimates. 

 

The intercensal estimates program currently provides estimates only for the broad 

race groups or all Hispanic, not the detailed subgroups or tribes. Even for the 

broader groups, the intercensal estimates historically have not done well in 

reflecting changes in migration patterns below the state level. Information from 

the ACS, along with other improvements in the methodology for intercensal 

estimates, will improve the quality of sub-state estimates of the broad race/origin 



groups. In addition, the ACS 5-year averages will provide information about 

changes between the censuses in the detailed groups. As illustrated in subsequent 

sections, for small groups the ACS can only measure fairly dramatic changes, but 

dramatic changes are the ones that are most important to measure. Appendix 1 

includes some examples of dramatic change between 1990 and 2000, suggesting 

that large percentage changes are fairly common for small groups. 

 

For ancestry groups, the intercensal estimates program does not currently provide 

estimates. The ACS will update the estimates of the size and characteristics of 

ancestry groups. 

 

IV. REASONS GIVEN FOR CONCERNS ABOUT ACS ESTIMATES FOR SMALL 

POPULATIONS 

 
A. Each ACS 5-year average is based on a smaller effective sample size than 

the census long form. This means that the ACS estimates will have larger 

confidence intervals than long-form estimates. Since the long-form 

estimates already have large confidence intervals for small groups, this 

may make the data too noisy to be useful. (This is the “blurry freeze 

frame” in our metaphor.) 

 

B. The 5-year averages are harder to interpret than a snapshot, especially when 

there are substantial changes in the population during the period of the 

estimate. (“This is the blurry video for fast-moving objects.”) 

 



C. Because of the subsampling for nonresponse follow-up, populations with low 

mail return rates will tend to have a smaller number of ACS interviews than 

other groups. This will increase the standard errors for the groups with low 

mail response. 

 

D. A small population group may be dispersed throughout the list of addresses. 

Given how small the ACS sample is each month, how can we be sure of 

getting a representative sample from the group? For example, some months 

there might be no one selected from the group. 

 

The responses to the concerns will be summarized in Section V, with some 

additional details discussed in Section VI. The next Section discusses an 

important special case. 

 

V. THE BASIC RESPONSES TO THE CONCERNS IN SECTION IV 

 
This discussion will use the example of a population group that numbers 400 persons. This 

could represent either 1) the number of people in a particular population group in a particular 

area; or 2) the number of people in an area from a group who have a specific long-form 

characteristic, such as being employed in a particular industry teenage mothers enroll in 

school, or people who use a language other than English at home. This hypothetical example 

uses a relatively high, yet generally realistic, standard error for both the ACS and the long 

form.  The relatives high standard error in the example would correspond to a characteristic 

which has the same value for all or most of the members of a household; Such characteristics 

tend to have higher-than-typical standard errors. As long form and ACS data become 



available for a wider range of characteristics, analyses like this one will be done using the 

actual standard errors for a variety of estimates, large and small. 

 

A. Each ACS 5-year average is based on a smaller effective sample size than the 

census long form. This means that the ACS estimates will have larger confidence 

intervals than long-form estimates. Since the long-form estimates already have 

large confidence intervals for small groups, this may make the data too noisy to 

be useful. (This is the “blurry freeze frame” in our metaphor.) For a group of 400 

people, the census long form would typically have a 90 percent confidence 

interval of roughly (280, 520).1 An ACS 5-year average would have a larger 

slightly interval, on the order of (240,560). In other words a typical confidence 

interval for a hypothetical 2010 census long form estimate of 400 would be  120. 

A 2008-2012 ACS average estimate of 400 would have an interval of  160. 

 

The basic premise of the ACS rolling sample is that this relatively moderate 

increase in the sampling error for one part of a decade is a good tradeoff to give 

the ability to update the 5-year average every year. If the size of the population 

changes, the 5-year average gives a more accurate picture of current conditions; 

for example, if the actual 5-year average population increases from 400 to 480, 

then the updated ACS 5-year average will be  more accurate than the previous 

census.2 As shown in Attachment 1, small population groups can easily change by 

much more than this, in which case the updated ACS estimate would give a much 

                                                 
2 This would be the confidence interval will be centered on 400, if the estimate  is  400. The actual estimate would not be exactly equal to the population 
value because of sampling error. See Appendix 3-A. The length of the interval depends on what characteristic is being measured. See Appendix 3-B. 



more accurate reflection of current conditions, compound to continuing to use the 

previous census. 

 

In addition, the ACS can provide information about when during the decade the 

changes took place. This can be important in trying to assess the reasons for the 

change and whether the change is likely to continue into the next decade. Because 

of the relatively small annual ACS sample size, this ability is limited to large 

changes, as discussed in Section VI.A and illustrated in Appendix 2. 

The confidence intervals mostly reflect sampling error. This discussion has not taken into account 

potential improvements in non sampling error in the ACS, such as reduction in because the 

experienced interviewers and follow-up by telephone of mail forms with missing data. This is 

expected to compensate in part for the slightly large confidence intervals.  

 

B.  The 5-year averages are harder to interpret than a snapshot, especially when 

there are substantial changes in the population during the period of the estimate. 

(“This is the blurry video for fast-moving objects.”). The bottom line of the 

argument in favor of the moving averages is as follows. If the population is not 

changing substantially, then a multi-year average is equivalent to a snapshot. If 

the population is changing substantially, then getting some information about the 

change is better than getting no information, as happens when data are collected 

only once in ten years.  

 

A more detailed answer, depends on the specific situations. Section VI.B provides examples of 

ways a population might change over time, and how the ACS information would be used in these 

different situation. In every case, the series of 5-year averages are preferable to statistics for only 



having one year out of ten. In some situations, the fullest use of the information provided by the 

ACS would supplement the standard 5-year averages with information from the 3-year and 1-year 

average “research files.” 

 

There are some cases in section VI.B where only a single 5-year average, with no updating, would 

not be as good as a decennial snapshot.  In these cases, it is the regular updating that gives the 

ACS its advantage. Obviously, it would be ideal if we could collect the full long form sample, 

every year, but that is not an option because of the cost and public burden. 

 

C. (The 5-year averages are harder to interpret than a snapshot, especially when 

there are substantial changes in the population during the period of the estimate. 

(“This is the blurry video for fast-moving objects.”)  On average, about 60 percent 

of the population are represented by the ACS data collected by mail or CATI. For 

most of the remaining 40 percent of the population, the data from a one-in-three 

subsample 

The ACS Survey is being designed to compensate for areas with lower-than-

average mail response rates, so that the standard errors will be more similar for all 

small population groups. Studies have shown substantial variation in mail 

response rates by race and geography. Mail response rates in the testing phase 

have been in lower for tracts with high proportions of African American or 

Hispanic population. There is some evidence of substantially lower rates for tracts 

with high proportions of American Indian or Alaska Native population or Native 

Hawaiian and Other Pacific Islander population. There is also evidence that 

households with limited English proficiency, including non-Hispanic households, 

have a lower-than-average mail return rate. It is important to compensate for these 



variations, to bring the standard errors for all groups and areas in line with the 

overall expectations. We are developing plans to oversample geographic areas 

with lower mail response rates, and to provide more opportunities for people with 

limited English proficiency to respond to the ACS as another language, either by 

mail or telephone. These developments are important for meeting the standard 

error objectives for all population groups.  

 

For many areas and population groups with lower-than-average mail response 

rates. The ACS is expected to have compensating advantages in nonsampling 

error Judging from 1990 census results, the completeness of long-form data 

collection in such “hard-to-enumerate” tends to be uneven. There is evidence 

from the ACS tests that the ACS has more consistently high completeness of data 

collection for the units in its sample, because of the smaller, more experienced 

interviewing staff and because of the opportunity to improve the collection over 

time in areas where these are collection problems. This is being studied further as 

part of the ACS evaluators. 

 

It is important to keep the proportion of missing data low for all areas and 

population groups. 

More complete data collection is important for two reasons. First, incomplete data increases the 

standard errors of the estimates; in other words, the confidence intervals are larger than they 

typically would be. Second, the incomplete data may result in a statistical “bias” in the estimates. 

The potential “bias” occurs because the survey systematically excludes some proportion of the 

population, namely the people whose data would be missed by the survey even if their address was 

selected for sample and follow-up.  



 

A. (How can a small sample represent a small, a small population group may be 

dispersed throughout the list of addresses. Given how small the ACS sample is 

each month, how can we be sure of getting a representative sample from the 

group? For example, some months there might be no one selected from the group 

widely dispersed population group?) Although sampling statisticians rely on the 

“laws of probability” to select survey samples that are “representative” and have a 

certain “margin of error,” the intuition behind these “laws” seems less plausible in 

some cases than in others. It is easy for people to visualize how a systematic 

sample, for example taking every sixth address, gives good representation for a 

population group that is clustered in a particular geographic area. However, it is 

hard to visualize how a representative sample can be “guaranteed” if the 

population group is scattered randomly without any particular pattern. This is 

hardest to visualize when the population group is small and the sampling rate is 

relatively small.  

 

These intuitive concerns about the “guarantee statisticians” of representativeness 

relate to a legitimate issue. The laws of probability make “guarantees” only within 

a certain “margin of error,” or  “confidence interval.” When the sample and 

population group are both small, the margin of error can be large, as a percentage 

of the actual estimate. The “laws of probability” do not have any remarkable 

property of giving very precise estimates from small samples. The only thing that 

is remarkable about a “scientifically” drawn sample is that the laws of probability 

allow statisticians to be quite specific about how large the margin of error due to 



sampling is likely to be.2 Section VI.C has more discussion about how it is 

possible to know the margin of error for a 5-year average, even with a very small 

sample each month. The explanation is in brief “the law of averages”: Each 

month’s estimates may be very unpredictable, but averaged over 60 months, the 

results are reasonably stable. 

Whether a survey’s sample size is adequate depends on  whether the confidence intervals for the 

survey estimates are small enough to allow data users  to learn what they need to learn from the 

data. A common way to think about the adequacy of confidence intervals is to consider how large 

a difference in survey estimates it would take to be “statistically significant”. With census long 

form estimates for two groups of about 400, each having a confidence interval of  120 estimates 

would be statistically significant unless the two estimates were as different as about 315 for one 

group versus 485 for the others.  

 

With the larger ACS confidence interval of 160 for a 5-year average, the 

difference between  averages of  315 and 485 would not quite be statistically 

significant. It would take a difference of 297 versus 513 to be significant. This 

indicates the price paid because the proposed ACS has a smaller sample size in a 

5-year period than the long form has in the census year. To reiterate the points 

made in Section V.A., for this price, data users get the ability to look at changes 

during the decade, and reductions in nonsampling error will offset a portion of 

this price. 

 

                                                 
2 This contrasts with non-sampling errors such as nonresponse, undercoverage, or misunderstanding of questions, where it is hard to quantify how large 
the resulting error in the estimates is likely to be. 
 



The ultimate question for users of data for small groups is whether the long 

form’s somewhat slightly  greater precision, for comparing groups at census time, 

has practical importance that is worth giving up the opportunity to learn about 

substantial changes in the size or characteristics of the small group over time. The 

premise of the ACS design is that the ability to learn about substantial changes 

over time is very important for small groups, and worth a moderate loss of 

precision at any given point in time. 

 

As an example, consider the potential use of estimates of the number of children 

age 0-5 who speak a language other than English at home, to prepare school 

systems for the need to provide appropriate educational opportunities for these 

children in coming years. The series of  ACS  5-year averages can monitor trends 

in the number of children in this group, Also discussed in the next section, the 1-

year and 3-year averages can detect sudden large changes. By contrast, a single 

decennial estimate or a single 5-year average, whether 400±120 or 400±160, does 

not have the precision and timeliness to be much help in planning.1 

 

VI. MORE DETAILED EXAMPLES AND DISCUSSION 

(More about standard errors and change estimates). The figures in Appendix 

2 illustrate the ACS standard errors as they affect the measurement of small 

populations which change over time. Figure 1 shows ACS 5-year averages for 

a population which changes from 400 in the year 2010 to 1400 in the year 

2020. The graphs start with the year 2012, when the population value is ___. 

                                                 
1 Note that the 2010 long form data would be available in late 2012, in time for planning the 2013-2014 school year. The 2007-2011 ACS average, 
available in mid-2012, would not by itself be any more timely for planning the 2013-2014 school year. It is the series of 5-year languages, and the ability 
of shorter averages to more quickly detect large changes, that make the ACS more useful. 



In each figure, the diamond symbols indicate the assumed population values 

for each year. The solid lines indicate the upper and lower bounds for a 

probable estimate from the ACS averaged for the past 5 years and updated 

each year. For each year, the graph shows the most recent information that 

would be available in that year. For example, the bounds for the year 2018 

show the range that has a 90 percent probability of containing the 2013-2017 

average estimate for the ACS sample, given that the population values are the 

diamonds.  

 

The increasing spread between the upper and lower bounds in figure 1 occurs 

because the number of people with the characteristics is increasing. Larger 

estimates tend to have larger standard errors, although the standard error 

grows smaller as a percentage of the estimate.1 

 

Figure 2 represents the corresponding probable ranges for the long form 

sample. 

Although the 5-year averages in Figure 1 tend to lag slightly behind the 

population values, and there is substantial sampling error is the long form in 

Figure 2X, the 5-year moving averages obviously tend to be closer to the 

current population value in most years than the long form in Figure 2. The 

ACS 5-year averages reflect the direction of the actual trend, unlike the long 

form. 

                                                 
1 For  example, the standard error for the 2012 estimate is____, which is___ percent of the middle of the range of values, which is___. For the 2022 
estimate, the standard is ___, which is ___ percent of the mid range value which is ____. 



Figures 3 and 4 show the same example, using ACS 3-year and 1-year 

averages. The 3-year averages are a reasonable alternative to the 5-year 

averages for many uses of the data, where The smaller time lag would 

compensate for the higher sampling error. The single-year ACS has a much 

larger range of probable error, and is not as useful unless there is a very large 

change. 

 

Figures 5 through 8 show the same information as Figures 1 through 4, except 

that the true values in the example have a sudden jump from 400 to 1,400 at 

the end of 2014. The 5-year ACS averages in Figure 5 pick up the changes 

with a few years, much sooner than the decennial long form in Figure 6. The 

changes is fully reflected it in the 2015-2019 average. However, the 5-year 

averages give the impression that there is a steady increase starting in 2015, 

rather than the sudden jump. This is better than the actual information than 

that form, the long form, but not the best picture of the change. 

 

This is an example where a more detailed analysis using 3-year and 1-year 

averages is needed to get a full picture. Having decided from looking at the 5-

year averages that there is an important change in the population during the 

decade, an analyst can learn more by looking at the 3-year and 1-year 

averages. In this extreme example, comparing each 1-year average to the 

previous year would give a good indication of the timing of the change. After 

learning from the 1-year numbers that there might be an unusual jump in 

2015, the 3-year averages give a better idea of the size of the jump without 



overly “smoothing” the change as the 5-year averages do. Having considered 

all three ACS charts, the change (up or down),  the analyst would know the 

direction of the magnitude of the increase, and that it took place over a few 

years in the middle of the decade. The analyst might still be uncertain whether 

the change took place all in one year or over several years. None of this 

information would be available from two measurements taken ten years apart 

(Figure 6). 

The  practical implications for policy decision are obvious. The ACS allows 

informed decisions to be made in response to changing conditions. The 

decennial census documents historical changes after they have occurred over a 

decade. 

 

A. Multi-year averages for changing populations. If the population does not 

change meaningfully over a 5-year period, then there is no issue about 

interpreting the 5-year average. For different patterns of change over time, 

illustrated below, the average may relate in different ways to the single year 

estimates. With the continuously collected ACS data, it is possible to get 

considerable information about the magnitude and direction of change over 

time.  Because of the sampling error, however, it will not be possible to be 

sure of picking up a slight trend, or whether a strong trend is steady or 

somewhat irregular. 

 

The examples below address the question of how useful it would be to know 

only the information available from, compared with knowing one individual 



value out of ten. To keep the examples simple, the tables below do not include 

the margins of error, as did the graphs Figure 1-8. Appendix 2 provides a 

discussion of some important statistical points for those who want a detailed 

technical discussion. 

 

In all the examples, averages which cannot be calculated from the data for the 

years shown in the tables, are left blank to make the example easier to follow.  

These rules would be available from the ACS, once it has been fully in place. 

 

In most of the examples, the census year is the fifth year shown in the table, so 

data before and after the census are shown. In some examples, to  illustrate 

what would have happened if the pattern of change had occurred one year 

earlier compared to the census, there is an additional row of numbers showing 

what would be measured by a census in the sixth year. 

 

1. Steady Trend. If there is a steady increase or decrease in the size of 

the group being measured over a 5-year period, then the 5-year 

average corresponds to the value in the middle year of the average. For 

example, the second row shows that the average for years 1 through 5, 

which is available in year 6, is 440. This is equal to the actual size of 

the group in year 3 as, shown in the first row. 

 

EXAMPLE 1: A STEADY TREND 

Year(y) 1 2 3 4 5 6 7 8 9 10 11 12 



Actual Size 
of group in 
year y 

40

0 

42

0 

44

0 

460 48

0 

500 52

0 

540 560 580 60

0 

620 

Average of 
previous 5 
years 

__

_ 

__

_ 

__

_ 

___ __

_ 

440 46

0 

480 500 520 54

0 

560 

Previous 
census 
(year 5 
census) 

__ __

_ 

__

_ 

___ __

_ 

___ 48

0 

480 480 480 48

0 

480 

 

If the steady increase continues, the series of averages will give an accurate 

description of the trend, albeit with a three-years behind. The decennial snapshot, 

in the third row, misses the trend and becomes steadily more out of date, and fails 

to measure the trend. If the trend of annual data is somewhat irregular, the moving 

average will tend to smooth out the irregularities, making the trend look more 

steady than it actually is. A smooth increase in the moving averages means that 

the actual population is generally trending upwards, but not necessarily as steadily 

as the averages suggest. 

 

2. Sudden jump or drop.  The 5-year averages will show an increase 

when there is 

sudden jump, but they will smooth it out, masking the suddenness of 

the change. This is illustrated in Figures 5 through 8, and in the second 

row of following example. Two possible census years are shown in the 

example, a “year 5” census illustrating a jump which occurs right after 

the census, and a “year 6” Census illustrating a jump which occurs 

right before the census. 



 

 EXAMPLE 2: SUDDEN JUMP 

Year (y) 1 2 3 4 5 6 7 8 9 10 11 12 

Actual Size 
of group in 
year y 

40

0 

40

0 

400 40

0 

40

0 

60

0 

60

0 

60

0 

60

0 

60

0 

60

0 

600 

Average 
of 
previous 5 
years. 

__ __ __ __ __ 40

0 

44

0 

48

0 

52

0 

56

0 

60

0 

600 

Previous 
census 
(year 5 
census) 

__ __ __ __ __ __ 40

0 

40

0 

40

0 

40

0 

40

0 

400 

Previous 
census 
(year 6 
census) 

__ __ __ __ __ __ __ 60

0 

60

0 

60

0 

60

0 

600 

 

To detect the fact that the change is much more sudden than the 5-year averages indicate, it is 

necessary to look at the 3-year and 1-year averages, as part of studying and interpreting the 

changes. (As in Figures 7 and 8.) 

 

The uses of decennial census data, in a situation of sudden change like this, depend very much on 

the year that the large change takes place.  If , as with the September 11 attacks in 2001, the 

census comes shortly before an event of dramatic change, the census will provide a valuable  

profile of the area, but it will be 10 years before the impact of the event will be measured. This is 

illustrated in the third row of the table. If the census occurs after the change, as illustrated in the 

fourth row, it will instead provide a useful  “after” profile. If the census occurs during a period of 

dramatic change, for example right after a natural disaster, the census be disrupted by the event 

and the data may have limited value. 

 



The ACS 5-year averages would give a baseline profile for the small group before the dramatic 

change year 6, and eventually would give a 5-year average profile after the change (year 12). In 

that sense, it combines the information of a census before the change and a census after the 

change. However, as the example indicates, the picture given by the averages that cross the change 

year (years 7 through 11) requires careful interpretation.   

 

The entire series of ACS moving averages have a clear advantage over a decennial snapshot in 

such situations. They provide before-and-after profiles of the area. The 1-year and 3-year averages 

will give a useful earlier measure of the change if it is large. 

 

3. Irregular, seemingly patternless, change. This seems at first like the most difficult 

situation for which to interpret an average, but it is actually the most natural situation 

to use an average. Averages would often be used in such situations, even if there 

were a census every year and no concern about sampling error, because the average 

over a period of time provides a more stable description of the area. 

 

For this example, consider the populations in the group of interest in tow areas, each with 
considerable variation from year to year: 

 

EXAMPLE 3: IRREGULAR CHANGE POPULATION IN FIRST AREA 

Year (y) 1 2 3 4 5 6 7 8 9 10 11 12 

Size of group 
in year y 

159 263 226 367 117 253 79 298 234 64 159 162 

Average of  
previous 5 
years 

__ __ __ __ __ 226 245 208 223 196 186 167 

Previous 
census 
(year 5 census) 

__ __ __ __ __ __ 117 117 117 117 117 117 

Previous 
census 
(year 6 census) 

__ __ __ __ __ __ __ 253 253 253 253 253 

 

   
 
 



 
 
 
 

 EXAMPLE 3: IRREGULAR CHANGE POPULATION IN SECOND AREA 
 

Year (y) 1 2 3 4 5 6 7 8 9 10 11 12 

Size of group 
in year y 

491 355 317 513 458 270 534 394 468 373 539 347 

Average of  
previous 5 
years 

__ __ __ __ __ 
427 383 418 434 425 408 462 

Previous 
census 
(year 5 census) 

__ __ __ __ __ __ 458 45
8 

45
8 

45
8 

45
8 

45
8 

Previous 
census 
(year 6 census) 

__ __ __ __ __ __ __ 270 27
0 

27
0 

27
0 

27
0 

 

In this example, the second area generally has a higher population for the group of interest. As the 

averages in the second row show, the first area’s population averages somewhere around 200 and 

the second area somewhere around 400. The 5-year averages in row 2 show this general 

relationship of the areas more clearly than the “unsmoothed” single year numbers in row 1. 

 

A decennial snapshot can give a very misleading picture in such situations. In this example, if the 

snapshot is in year 5, it would give an usually large impression of the difference between the areas 

(117 compared to 458 from row 3).  If the census were in year 6, it would show the areas as being 

almost the same (253 compared to 270 from row 4). 

 

4. A single-year spike. This is an extreme case where a decennial snapshot could be 

advantageous under very restricted circumstances, but in general the ACS 

information would be preferable, although far from perfect. In this example, 

members of a population move into an area for one year. 

 

 

 

 



 

 

EXAMPLE 4 

Year (y) 1 2 3 4 5 6 7 8 9 10 11 12 

Size of group 
in year y 

0 0 0 0 0 400 0 0 0 0 0 0 

Average of  
previous 5 
years 

__ __ __ __ __     0 80 80 80 80 80   0 

Previous 
census 
(year 5 census) 

__ __ __ __ __ __ 0 0 0 0 0   0 

Previous 
census 
(year 6 census) 

__ __ __ __ __ __ __ __ 400 400 400 400 

 

If the group happened to be in the area at census time, then there would be a full one-in-six sample 

to provide a description of the group with an error only on the order of ±120 as in line 4 of the 

example. However, this may not be a desirable outcome, unless there is independent information 

that the group was in the area only for one year. It would not necessarily be desirable to use the 

census data to describe the area in future years. If the group happened to be in the area outside of 

the census year, then the census would give no indication of the characteristics of the group, and 

no indication that it ever was in the area, as in line 3. 

 

In this example, the ACS 5-year averages in line 2 would indicate that the group was in the area 

but would give a “blurred” picture of exactly when the group was there. The 5-year average would 

be something like 80 ± 72.4  The 1-year estimates would give the most useful description of the 

situation. The ACS 1-year estimate would be based on a one-in-forty sample and would give a 

confidence interval something like 400 ± 360. The margin of error is the same percentage of the 

estimate for both the 1-year and 5-year averages: 72 divided by 80 is the same as 360 divided by 

400. This is because the 5-year average estimate in this example depends entirely on the data from 

the one year when the group was in the area. After looking at the 1-year series, the analyst would 

                                                 
4 These intervals illustrate the margin of error and general magnitude of the estimate. An actual sample would probably give an estimate different than 80. 
See the discussion in Appendix 3-1. 



recognize the blurring effect of the 5-year averages, which gives a l-year estimate spread over 5 

years. 

 

The ACS provides some useful information. Even though the 5-year averages give a confusing 

picture of the timing, the 1-year data would indicate that the group was in the area. and when the 

survey estimates of the characteristics of such a small one-year group will have a large confidence 

interval and will be of little use, unless the members of the group have very similar characteristics, 

such as being employed in a particular occupation. 

 

In 9 years out of 10, a decennial snapshot would totally miss the group. If the census happens to be 

in the year the group is in the area, then it gives much better estimate of the group’s characteristics 

for that single year than the ACS. However, in future years, continuing to use this snapshot would 

give an erroneous picture of the areas. So the Census would be advantageous only if the group is 

in the area during census year and if there is independent information that this was a short-term 

event. Otherwise the ACS provides more useful information. 

 

 C. (Details on Proposal for oversampling areas with low mail response.) Specific proposals 

are given in the paper Tersine, et al (2002) listed in the references. 

There is increasing evidence of the completeness of data collected by the ACS field staff 

in “hard-to-enumerate” areas. This was seen in a study of the ACS data in the Bronx NY 

ACS test sites (Salvo and Lobo, 2002), as well as U.S. Census Bureau (2002). Studies for 

additional test sites will be available next year. 

 

D.  (How does probability sampling work for small samples?) The discussion starts with a 

simplified analogy to illustrate the basic principles. Then it presents a more exact 

theoretical model, and then describes how confidence intervals are calculated in practice. 

 



E. A simplified analogy.  To give an example with round numbers suppose the group of interest 

had 240 people instead of 400. Each month the ACS selects a sample of about one in 480 

people in the population, or about one in 40 for the year. So the expectation is that the sample 

will have about one person from the group in every two months of sample, or an expected 

“one-half person each month,” calculated as 240/480. 

 

Looking at 60 months of sample, this is somewhat analogous to tossing 60 coins, each with a fifty-

fifty chance of heads, giving an expected number of heads equal to one-half on each toss of the 

coin. The total number of people from the group who fall into sample in the 60 months would 

correspond to the total number of heads on the 60 coin tosses. 

  

To get from the number of people in the group who fall into sample, to the estimated number of 

people in the group who are in the population, it is important to remember that the survey data are 

weighted. Since the ACS samples about one person in 40 every year, each sample person in any 

given year is counted as 40 people in the population for that year’s estimate. To get the 5-year 

average, the 5 annual estimates are added together and divided by 5. This means that the 5-year 

average would be 8 times the number of people in sample in the 5-year period (counted as 40 in 

the annual estimate, and then divided by 5 to get the 5-year average). 

 

This means that if exactly 30 of the 60 “coin tosses” were “heads” then the 5-year average 

estimate would be 8x30=240, the “expected” result. If a large number of different samples were 

selected, this would be the average result from all the sample estimates combined. 

 

 With 60 coin tosses, there might not be exactly 30 with heads up. However, the range of results 

that are likely to occur is quite predictable. There is a 90 percent probability that out of 60 coin 

tosses, the number of heads will be at least 23 and more than 37. 

 



Likewise, the exact results from 60 months of ACS sample may not be the “expected” number, but 

the likely range of result for each statistic can be predicted. Multiplying by 8, this give an 

estimated number of people in the range 184 to 296. There is a these gives a 10 percent chance 

that the estimate will be outside this range, but when that happens, it is rarely far outside the range. 

In tossing 60 coins, there is a 99 percent probability that the weighted estimate will be in the range 

160 to 320, and a 99.9 probability that it will be in the range 136 to 344. 

 

This predictability of the range of results that will be obtained from a large number of random 

outcomes is the basis for the science of sample survey. It is the reason that sample units are 

selected using random numbers rather than someone’s judgment of what would be a good sample. 

The same principle is used in applications as varied as actuarial life tables, random clinical trials, 

and predicting payouts at casinos. Anyone who would like a more vivid illustration of how 

random sampling works is encouraged to actually perform the experiment of shaking 60 coins in a 

cup, pouring them out onto a table, and counting the number of “heads”, that come up. Repeat this 

5 or 10 times to see how the results vary, but stay within a predictable range. 

 

A more realistic model. The number of people in a small population group who are part of the 

ACS sample is, of course, not produced by tossing a coin to get either one person or zero people in 

sample each month. If the population has 400 people  in the group of interest, they actually are 

divided up into households, some with one person from the group, some with two and some with 

many more. Some of these households will not respond by mail or telephone, so even if the 

household is selected there is a two-thirds chance that it will be dropped from sample and a one-

third chance that it will be selected for follow-up, and weighted to count in the estimates as three 

households with the same characteristics as the sample household. 

 

A more appropriate model would be what probability theorists sometimes call an “urn model”. 

Imagine filling an urn with as many beads as there are housing units in the population. Most of the 

beads are labeled “zero,” but some are labeled with one, two, or some other number, with the 



numbers totaling to 400. Some of the beads are labeled “N” for “nonresponse by mail or 

telephone.”  A sample of 1 in of 480 beads is selected each month. For each one of the sample 

beads which is labeled “N”, a random number is chosen to give a one-third chance of keeping the 

bead, and multiplying its number by three, and a two-thirds chance of discarding the bead. 

 

Mathematicians have analyzed experiments like this theoretically, and confirmed their analysis 

with small-scale experiments with actual beads and boxes, and larger-scale experiments with 

computer-generated random numbers. Such experiments show the same sort of predictability of 

results as coin tosses. The exact numerical results giving the likely range of values are more 

complicated to work out than for coin tosses, but for reasonably large samples, the same 

mathematical approximations can be used to work out the likely range of values for the estimates 

from a sample of 480 “beads” from any such “urn”. 

 

The same rules of arithmetic that apply to beads with numbers on them also apply to households 

with a number of people in each one.assigning an identification label to each address, and using a 

random process to select which labels are in sample, the numerical results of the sample of 

households from a list of addresses are very nearly the same as if beads were being drawn at 

random from urns. 

 

Modern methods for estimating standard errors.  Up until the 1960’s, survey confidence intervals 

were estimated by learning enough about the population to deduce the standard error theoretically 

from mathematical models such as the urn models described above. For each characteristics, it was 

necessary to make assumptions about the pattern of  “clustering” of  the characteristic within 

households. Highly clustered characteristics such as ancestry, where all members of a household 

often have the same  characteristic, tend to have higher standard errors than less clustered 

characteristics such as disability. 

 



Since the 1970’s the more usual procedure has been to use  “ replication methods”. These methods 

work by splitting the sample into pieces, so that each piece is a microcosm or “ replicate” of the 

full sample. Then the variation among the pieces is measured, and the standard error is 

mathematically deduced from the measured variation among the pieces. 

 

Mathematical theory, and tests with simulated populations, show that these methods give numerical 

results similar to the more traditional  “urn model” approaches for deriving the standard errors. The 

replication methods can more readily reflect the actual clustering patterns found in the actual 

population, because they are calculated from the actual sample data, not a theoretical model. The 

ACS and the census long form both use replication methods to calculate standard errors, so the 

standard errors reflect the actual clustering found for various population groups.   

 

In summary, probability sampling works because of the predictability of random events in the 

aggregate. No single month of the ACS sample is very predictable, but 60 months is  enough of an 

aggregate for the results to be predictable within a calculatable margin of error. The calculation of 

error is based on statistical methods that have been developed to deal with random events that are 

more complicated, but basically similar, to tossing coins and counting the number of times heads 

comes up. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 

   Appendix 1  

 

Examples of Large Growth 
For Small Population Groups 

in the ACS Comparison Counties 
 
Population Group County  1990 Estimate     2000 Estimate       Sources (1990/2000) 
 
Asian Indian Pima, AZ 1,041  2,105 STF-1/SF-1 
 
Chinese  Ft Bend, TX 4,072 10,500 STF-1/SF-1 
 
Korean  Lake, IL 1,923 4,089 STF-1/SF-1 
 
Vietnamese Douglas, NE    529 1,122 STF-1/SF-1 
 
Black or African Schuylkill, PA    842 3,147 STF-1/SF-1 
American 
 
American Indian or Bronx NY 6,069 11,383  STF-1/SF-1 
Alaska Native 
 
American Indian or Lake, IL 1,198 1,801 STF-1/SF-1 
Alaska Native 
 
Native Hawaiian and Bronx NY    541 1,383 STF-1/SF-1 
Other Pacific Islander 
 
Other Micronesian Multnomah, OR 181 505 STF-1/SF-1 
 
Dominican Broward, FL 3,489 8,869 STF-3/ACS 
 
Salvadoran Douglas, NE     52 414 STF-3/ACS 
 
Arab  Broward, FL 5,174 9,461 STF-3/ACS 
 
Ukranian Multnomah, OR 1,524 5,469 STF-3/ACS 
 
 
 
NOTES:  The 2000 estimates for race or Hispanic origin are for those marking one race or one origin. The 
ancestry estimates are first ancestry. Census counts have been used when available. For Native Hawaiian 
and Other Pacific Islander count for in 1990, the detailed race tables were used. For the ACS estimates, the 
lower bound of the confidence interval for the 2000 data is shown.  This is the most conservative estimate, 
and the actual growth is likely to have been larger than that shown in the tables. 
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ACS 5-year Average (Figure 1)
Population with Strong Trend
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Decennial Long Form (Figure 2)
Population with Strong Trend
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ACS 3-year average (Figure 3)
Population with strong trend
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ACS 1-year Average (Figure 4)
Population with strong trend
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ACS 5-year Average (Figure 5)
Population with Sudden Jump
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Decennial Long Form (Figure 6)
Population with Sudden Jump

0

500

1000

1500

2000

2500

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

N
um

be
r 

w
ith

 C
ha

ra
ct

er
is

tic

Year

Actual Latest LF (low)
Latest LF (high)



Appendix 2-4 

 

 
 
 

ACS 3-year average (Figure 7)
Population with sudden jump
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ACS 1-year Average (Figure 8)
Population with sudden jump
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                       Appendix 3-1 
 

 
A. Population values and estimates. The discussions in Sections V and VI gloss over an important 

distinction made in theoretical statistics. In Figures 1-8 the graphs illustrate the range of likely 

estimated values, assuming that the population has 400 people in the group of interest. In Section 

V, the discussion considered what margin of error would be associated with a survey estimate,  

assuming that the estimated number of people was 400. Since the goal of the discussion was only 

to give a general idea of how ACS and long form standard error compare, and not a statistics 

lesson, the subtle distinction was not emphasized.  

 

The distinction will be illustrated with an example. Suppose that the population of the group is a 

constant 400 people for the years 2008-2012, so that the actual 5-year average population is 400 

and also the 2010 count would be 400. The estimate from a long form sample could (with 90 

percent probability) range from 280 to 520. The corresponding ACS range is 240 to 560. This 

range is what the graphs in Appendix 2 illustrate. 

 

The actual confidence interval would be centered around the estimated value, not around the 

population value 400. If the long form gave an estimate at the upper end of its range, the 

confidence interval would be 520±137, or (383, 657). If the ACS estimate were at the upper end of 

its range, it would be 560±189, or  (371,749). Alternatively, the ACS or the long form could give 

estimates at the low end of the range. Exactly where the estimated value falls depend on which 

sample of addresses happens to be selected. The margin of error is larger or smaller depending on 

the size of the estimated value, as well as the sample size. 

 

The example in the text simplistically assumed that the estimated value was 400. The midpoint of 

the range of estimates is 400, so in that sense 400 is a “typical” value for an estimate, and 400±120 

or 400±160 is used to illustrate a typical confidence interval. However, the actual situation is more 

complicated as indicated in the previous paragraph. 

    



    

B.  Total Error.  The total survey error is usually partitioned into “variance” and “bias”. The variance 

mainly refers to the sampling error, which is expressed by the margin of error or the confidence 

interval.“Bias” is defined as the difference between the “true” value and the average of all possible 

samples. 

 

In the example in the second paragraph of Section V. A, the long form estimate is biased because it was 

based on a sample selected from a population where the value was 400, so 400 was the average of all 

possible samples, but the “true” value has now grown to 480. In this example, the ACS has no bias, as far 

as estimating the updated values of 480, but it has a larger standard error. 

 

The usual measure of total error is the Mean Squared Error (MSE) given by the formula 

 

MSE = (Standard error)2  + (Bias)2 

 

At some point, as the population grows beyond the initial value of 400, and the bias in the outdated 

estimate grows, the term (Bias)2  outweighs the term (Standard Error)2  so the Mean Squared Error of the 

long form estimate is larger than that of the ACS. In this example, 480 is just beyond the break-even point. 

 

Of course, if the “truth” is defined to be the most recent population value rather than the previous 5-year 

average, then the ACS 5-year average also has a bias because of population growth during the 5 years. 

Defining the “truth” this way increases the MSE of the ACS, but it tends to increase the MSE of the 

outdated long form even more, because the bias term is squared. As an example, of the last point, consider 

the steady trend in Example 1. By ear 10, 5 years after the census the most recent 5-year average would be 

520. Compound to this, the census has a “bias” of –40 = 480-52, or a squared bias of 1600. If the “truth” 

assumed to be 520, the 5-year average has zero bias. If the “truth is taken to be the actual value in year 10, 

which is 600, than the 5-year average has a bias of –80=520-600 or a squared bias of 6,400. The census  

 



    

 

has a bias of –120=480-600, giving a squared bias of 14,400. The squared bias for the census therefore 

exceeds the squared bias of the 5-year average by 8,000 rather than 1,600. 

 

C. “Margin of Error” and “Confidence Interval”.  The term “90 percent confidence interval” is 

precisely defined in the statistical literature as an interval from sample data, calculated in such a 

way that there is a 90 percent probability that the interval will contain the population value. A 

longer interval, for which the probability of containing population value is 95 percent, would be 

called a “95 percent confidence interval.” The interval can be expressed1 either the form 400±160 

or (240,560). 

 

The term “margin of error” has several meanings. It is sometimes used as a general term, synonymous with 

“the plus or minus amount in any confidence interval” and sometimes with a specific restricted meaning 

used mainly in political polling. The term is also used as a general reference to uncertainty in the estimate, 

with no specific numerical measure in mind. 

 

In political polling, “the” margin of error for a poll is the margin of error for a 95 percent confidence 

interval, assuming that each candidate has 50 percent of the vote. The pollsters give one margin of error for 

the entire poll, rather than a different margin of error for each estimate. For a typical poll, a candidate 

polling at 50 percent might have a confidence interval of 50±3, while one polling at 10 percent would have 

an interval of 10±2. In this case, the poll would be said to have a margin of error “3 points, plus or minus”, 

because that is the largest margin of error1 In the more general use of the term, the first estimate would be 

said to have a margin of error of  ±3 and the second estimate a margin of“±2. 

 

 

                                                 
1 

It turns out that estimates greater than 50 percent have a smaller margin of error that the 50 percent estimates. For example as estimate of 90 percent 
would have a confidence interval of 90±2. 
 


