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Abstract
Convergence properties are established for the output of a deter-

ministic Robbins-Monro recursion for functions that can have singu-
larities and multiple zeros. Our analysis is built largely on adaptations
of lemmas of Fradkov published in Russian. We present versions of
these lemmas in English for the first time. A gap in Fradkov’s proof
of the final lemma is fixed but only for the scalar case.

1 Introduction
In this note, we present a proposition about the convergence of a sequence
θt obtained from a deterministic algorithm of Robbins-Monro form,

θt = θt−1 − δtf (θt−1) + δtwt, t ≥ 1, (1)

where the sequences θt and wt belong to the space Rd of d-dimensional real
column vectors, f (θ) is an Rd-valued function defined on a subset of Rd

containing the θt but possibly not on all of Rd, and δt, t ≥ 1 is a sequence of
real numbers satisfying

δt ≥ 0, lim
t→∞

δt = 0,
∞X
t=1

δt =∞. (2)
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We require the sequence wt to be bounded,

max
u≥1

|wu| <∞, (3)

and to satisfy the usual Kushner—Clark condition (10) below. Other hypothe-
ses serve to restrict considerations to the situation in which the set of cluster
points of θt,

K =
n
θ : θ = lim

t0→∞
θt0 for some subsequence θt0 of θt

o
,

is contained within a bounded open set Θ on which f (θ) is continuously
differentiable. Then, part (a) of the Proposition explains that the sequence
θt either converges to some limit θ∞ ∈ Θ,

θt → θ∞, (4)

or K is infinite. Part (b) states that if f (θ) has a "Lyapunov function" V (θ)
with the basic property required in the Proposition (which is always true
when d = 1), then (4) implies f (θ∞) = 0. For the case d = 1, part (c) of the
Proposition explains that, even when K is infinite,

K ⊆ Θ0 = {θ ∈ Θ : f (θ) = 0} . (5)

The proof of the last result and the foundations of the proofs of parts (a)
and (b) have mainly been extracted from the proof of Theorem 3.17 of the
monograph by Derevitzkĭı and Fradkov (1981) (hereafter D&F) concerning
the almost sure convergence of a stochastic approximation scheme. In D&F,
this theorem, and the sequence of lemmas P.12—P.16 that constitute its proof,
are credited to Fradkov. Although formulated differently, Fradkov’s Lemma
P.12 can be interpreted as reducing the proof of its convergence assertions
for the stochastic approximation method considered in his Theorem 3.17 to
the proof of the assertion (5) of our Proposition.
Our Proposition avoids the hypotheses of Fradkov’s theorem that the

weighting sequence δt is square summable and monotonically decreasing.
D&F explicitly use these hypotheses only in the proof of Lemma P.12, es-
sentially to verify (10) below, and there is only one place in the proof of the
subsequent lemmas where we have to provide additional discussion because
we do not assume monotonicity. However, there is a gap in the proof of
the Fradkov’s main supporting result, Lemma P. 16, that cannot be bridged
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without additional restrictions except in the case of sequences θt of dimension
d = 1. For this reason, the part (c) of the Proposition and our version of this
lemma, Lemma 6 below, are restricted to scalar case. The gap is described
after Lemma 6’s proof. With the exception of Lemmas 2 and 5, the sequence
of lemmas and proofs given below follows closely the sequence of lemmas and
proofs of D&F. However, our presentation provides greater precision in both
statements and proofs of the lemmas and it makes these results available in
English.
Our weaker assumptions on δt and the fact that we allow f (θ) to have

singularities usefully increase the range of applicability of the results. Our
Proposition has been applied to the analysis of recursively estimated time
series model parameters in the situation of a misspecified moving average
model of order one, see Cantor (2001) where almost sure convergence of
some well known recursive estimation methods is established showing that
an approximating sequence to the sequence of recursive estimates satisfies
a stochastic version of (1) with non-monotonic δt and wt converging almost
surely to zero. In the incorrect model situation, it is known that under
weak assumptions, maximum likelihood and other parameter estimates can
converge almost surely to a set of points rather than to a unique limit,(see
Section 4.3 of Findley, Pötscher, and Wei (2001) for a survey of the relevant
literature) and that this set can be finite see Åström and Söderström (1974),
Kabaila (1983) and Tanaka and Huzii (1992), or infinite, see Pötscher (1991).
The limit set consists of minimizers of an appropriate function and in Cantor
(2001), the functions f (θ) are the derivatives of the the functions being
minimized. It has not been known whether, for a given realization (sample
path) of the time series being modeled, the sequence of parameter estimates
of an incorrect model converges to a single element of the set or oscillates
between distinct elements. When the set Θ0 of of zeros of f (θ) is finite, our
Proposition shows that each recursive estimate considered by Cantor can
converge to different limits for different realizations of the time series but on
a given realization it must converge to some zero of f (θ).
There are stochastic Robbins-Monro algorithms with nonmonotonic but

square summable δt for which more precise results are available about what
values of Θ0 can be limits when this set is finite with multiple entries, see
Nevel’son (1972) and Nevel’son and Has’minskĭı (1976), but these results as-
sume that f (θ) is defined and differentiable on all of Rd with a derivative
that is bounded (among other restrictions on f (θ) stronger than those of the
Proposition) and therefore exclude the case of interest in Cantor (1991), in
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which, as in the examples of Åström and Söderström (1974), Kabaila (1983),
and Tanaka and Huzii (1992), f (θ) is a rational function whose denomina-
tors have real zeros. Such functions are also excluded by the assumptions
of Benaim (1996), a reference with very general results about the limiting
behavior of θt when δt is monotonically decreasing but not necessarily square
summable.

2 The Proposition and Lemmas

For a d-dimensional column vector x = (x1, . . . , xd)
T , we define kxk =³Pd

i=1 x
2
i

´1/2
. For a d×d matrixM , we define kMk = λ1/2max

¡
MTM

¢
, where

λmax denotes the largest eigenvalue. For any sequence δt satisfying (2), we
define, for every ∆ > 0,

t∆ = min {t0 : δt + δt+1 ≤ ∆ for all t ≥ t0} (6)

and, for every t ≥ t∆,

u∆ (t) = max {u ≥ t : δt + · · ·+ δu ≤ ∆} . (7)

Because
P∞

t=0 δt =∞, we always have u∆ (t) <∞. Also, u∆ (t) ≥ t+ 1, and
because δt → 0,

lim
t→∞

∆−
u∆(t)X
u=t

δu

 = 0. (8)

For each ∆ > 0 and t ≥ 1, we define

r∆ (t) =

½
0, δt + δt+1 > ∆

maxt≤v≤u∆(t)−1 k
Pv

u=t δu+1wu+1k , δt + δt+1 ≤ ∆
. (9)

and require
lim
t→∞

r∆ (t) = 0. (10)

In the applications in Cantor (1991) that motivated this paper, wt is tran-
sient, meaning limt→∞wt = 0. In this case, it follows from
r∆ (t) ≤ ∆maxu≥t |wu|, that (10) holds. A variety of conditions are shown to
be equivalent to (10) (without assuming (3)) in Wang, Chong and Kulkarni

4



(1996): in particular, if (10) holds for one ∆ > 0, it holds for all ∆ > 0.
Theorem 1 of this reference shows that (10) is a necessary and sufficient
condition for (4) to hold for all bounded functions on Rd with a single zero,
Θ0 = {θ∞} which are continuous at θ∞ and have kθ − θ∞k−1 (θ − θ∞)

T f (θ)
bounded above zero in a certain uniform sense for every θ 6= θ∞. Here T

denotes transpose.

Proposition Let θt, t ≥ 0 be a sequence that satisfies a recursion of the
form (1) for which (2) and (10) hold for each ∆ > 0. Suppose there is a
bounded open set Θ on which the function f (θ) in (1) is continuous and
which θt enters infinitely often, without having a limit point of the boundary
∂Θ of Θ. Then the sequence θt is bounded, supt≥0 kθtk <∞, and its set K
of cluster points is contained in Θ.
(a) If f (θ) is continuously differentiable on this set Θ, then K is either

infinite or consists of a single vector, K = {θ∞}, in which case limt→∞ θt =
θ∞ holds.
(b) Suppose in addition that there is a twice continuously differentiable

function V : Θ 7−→ R such that, for any θ ∈ Θ for which f (θ) 6= 0, the
derivative ∇V = (∂V/∂θ1, . . . , ∂V/∂θd)T has the property

∇V (θ)T f (θ) > 0. (11)

Then if limt→∞ θt = θ∞, it necessarily follows that f (θ∞) = 0, i.e. (5)
holds.
(c) If d = 1, then any antiderivative V (θ) of f (θ) satisfies (11), and

the inclusion (5) holds. Therefore, if Θ0 is finite, then limt→∞ θt exists and
is contained in Θ0 = {θ ∈ Θ : f (θ) = 0}.
The proof is obtained via a sequence of lemmas and the following obser-

vations. First, the assumptions of the Proposition yield that:
(i) There are only finitely many t0 such that θt0 ∈ Θ but θt0+1 /∈ Θ. Other-

wise, since Θ is bounded, a subsequence θt00 of the infinite sequence θt0 would
have a limit θ in Θ ∪ ∂Θ. Since θ /∈ ∂Θ, by assumption, we would have
θ ∈ Θ. By continuity, limt00→∞ f (θt00) = f

¡
θ
¢
, and (1), (2), and (10) would

yield limt00→∞ {θt00+1 − θt00} = 0, and therefore limt00→∞ θt00+1 = θ, and hence
that θt00+1 ∈ Θ for t00 sufficiently large (because Θ is open), which contradicts
the definition of the θt0 sequence. Consequently, there is a time tΘ such that

θt ∈ Θ, t ≥ tΘ. (12)
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For the subsequent discussion, we shall always assume that t ≥ tΘ.
(ii) It follows from (12) that the sequence θt is bounded. Hence its set of

cluster points K is a nonempty compact subset of Θ∪∂Θ, and since K ∩∂Θ
is empty, K ⊂ Θ, as asserted.
Consequently, there exists a ρ > 0 such that, for each θ ∈ K, the closed

ball B(θ, 2ρ) =
©
θ ∈ Θ :

°°θ − θ̄
°° ≤ 2ρª satisfies
B(θ, 2ρ) ⊆ Θ. (13)

Because K is compact, for any point θ∗ on the boundary ∂Θ of Θ, we have

min
θ̄∈K

min
θ∈B(θ,2ρ)

kθ − θ∗k > 0.

It follows that the closure K̃ = K̃ (ρ) of ∪θ∈KB(θ, 2ρ) is a compact subset
of Θ containing K in its interior, K ⊂ IntK̃. By the continuity of ∇f (θ),
L = 1 + maxθ∈K̃ k∇f (θ)k is finite. Hence, from the Mean Value Theorem
and the convexity of B(θ, 2ρ), we have

kf (θ)− f (θ0)k ≤ L kθ − θ0k (14)

for every θ, θ0 ∈ B(θ, 2ρ) when θ ∈ K.

Lemma 1 (cf. Lemma P.13 of D&F). For each ρ > 0 such that (13) holds
for all θ ∈ K, there exists a ∆0 = ∆0 (ρ) such that for every 0 < ∆ ≤ ∆0

and any θ ∈ K, if °°θt − θ
°° ≤ ρ, (15)

holds for some t ≥ t∆, then so does

sup
t≤u≤u∆(t)

°°θu − θ
°° ≤ 2ρ, (16)

for t∆ and u∆ (t) defined in (6) and (7).

Proof. We use induction to establish (16). Let t ≤ v < u∆ (t) be such that

sup
t≤u≤v

°°θu − θ
°° ≤ 2ρ. (17)
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(This holds for v = t by (15).) From (1),

θv+1 = θt −
vX

u=t

δu+1f (θu) +
vX

u=t

δu+1wu+1

= θt −
vX

u=t

δu+1f
¡
θ
¢
+

vX
u=t

δu+1
©
f
¡
θ
¢− f (θu)

ª
+

vX
u=t

δu+1wu+1. (18)

It follows from (18) and (14) that

°°θv+1 − θ
°° ≤ °°θt − θ

°°+∆
°°f ¡θ¢°°+ r∆ (t) + L

vX
u=t

δu+1
°°θu − θ

°° .
Therefore, from an induction argument or the Discrete Bellman-Gronwall
Lemma (Solo and Kong, 1995 p. 315) and the fact that ex ≥ 1 + x for any
x ≥ 0, we have

°°θv+1 − θ
°° ≤ ©°°θt − θ

°°+∆
°°f ¡θ¢°°+ r∆ (t)

ª vY
u=t

(1 + Lδu+1)

≤ ©°°θt − θ
°°+∆

°°f ¡θ¢°°+ r∆ (t)
ª
eL

Pv
u=t δu+1

≤
½°°θt − θ

°°+∆

µ°°f ¡θ¢°°+max
u≥t

|wu|
¶¾

eL∆. (19)

Define

∆0 (ρ) = min

(
1

L
log

4

3
,

ρ

2
¡
maxθ∈K

°°f ¡θ¢°°+maxu≥1 |wu|+ 1
¢) . (20)

Then for each ∆ ≤ ∆0 (ρ) and t ≥ t∆ for which (15) and (17) hold, it follows
from (19) and (15) that

°°θv+1 − θ
°° ≤ 2ρ. Thus, by induction, (16) holds for

all t ≥ t∆,∆ ≤ ∆0 (ρ) for which (15) holds, as asserted.
The next lemma establishes the part (a) of the Proposition.

Lemma 2 Suppose the set K of cluster points of θt is finite. Then θt has
only one cluster point and hence has a limit. That is, K = {θ∞} for some
θ∞ ∈ Θ and θt → θ∞.
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Proof. Suppose to the contrary that K has several elements but is finite.
Then there is a ρ > 0 satisfying the hypotheses of Lemma 1 such that for
each distinct pair θ̃, θ̄ ∈ K, °°°θ̃ − θ̄

°°° > 3ρ (21)

holds, and there is a tρ ≥ 1, such that for every t ≥ tρ there exists a θ̄ (t) ∈ K.
such that °°θt − θ̄ (t)

°° ≤ ρ

holds. Define ∆0 by (20). Because no θ̄ (t) is the limit of θt, there is a
t ≥ max {tρ, t∆0} such that θ̄ (t) 6= θ̄ (t+ 1). Applying Lemma 1, we obtain°°θ̄ (t+ 1)− θ̄ (t)

°° ≤ °°θt+1 − θ̄ (t+ 1)
°°+ °°θt+1 − θ̄ (t)

°°
≤ ρ+ 2ρ = 3ρ,

contradicting (21). Thus θt has a single cluster point and hence a limit.

Lemma 3 (cf. Lemma P.14 of D&F). For θ ∈ K, ρ as in (13) and ∆0 as
in (20), and any 0 < ∆ ≤ ∆0 and t ≥ t∆ such that (15) holds, we have

θu∆(t) = θt − f
¡
θ
¢
∆+ q1 (t,∆) + q2 (t,∆) , (22)

where q1 (t,∆) has the property that there exist constants C1, C2 such that

kq1 (t,∆)k ≤ C1∆
°°θt − θ

°°+ C2∆
2, (23)

and q2 (t,∆) satisfies
lim
t→∞

q2 (t,∆) = 0. (24)

Proof. From (1), we obtain

θu∆(t) = θt − f
¡
θ
¢
∆+

∆−
u∆(t)−1X
u=t

δu+1

 f
¡
θ
¢

+

u∆(t)−1X
u=t

δu+1
©
f
¡
θ
¢− f (θu)

ª
+

u∆(t)−1X
u=t

δu+1wu+1.
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Set

q1 (t,∆) =

u∆(t)−1X
u=t

δu+1
©
f
¡
θ
¢− f (θu)

ª
,

and

q2 (t,∆) =

∆−
u∆(t)−1X
u=t

δu+1

 f
¡
θ
¢
+

u∆(t)−1X
u=t

δu+1wu+1. (25)

From (14) we have

kq1 (t,∆)k ≤ L

u∆(t)−1X
u=t

δu+1
°°θu − θ

°° , (26)

and from (19) and (20),

u∆(t)−1X
u=t

δu+1
°°θu − θ

°° = δt+1
°°θt − θ

°°+ u∆(t)−1X
u=t+1

δu+1
°°θu − θ

°°

≤ δt+1
°°θt − θ

°°+ eL∆
u∆(t)−1X
u=t+1

δu+1
°°θt − θ

°°
+∆eL∆

u∆(t)−1X
u=t+1

δu+1

µmax
θ∈K

°°f ¡θ¢°°+max
u≥t

|wu+1|
¶

≤ 4
3
∆
°°θt − θ

°°+ 4
3
∆2

µ
max
θ∈K

°°f ¡θ¢°°+max
u≥1

|wu|
¶
.

This yields (23) with

C1 =
4

3
L, C2 =

4

3
L

µ
max
θ∈K

°°f ¡θ¢°°+max
u≥1

|wu|
¶
. (27)

The assertion (24) concerning q2 (t,∆) follows from (8), (3), δt → 0,
maxθ∈K

°°f ¡θ¢°° <∞, and (10).
The final three lemmas use the properties of V (θ).
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Lemma 4 (cf. Lemma P.15 of D&F). Suppose θ ∈ K is such that f
¡
θ
¢ 6= 0.

Then for each subsequence θt0 converging to θ, there exist ∆0 > 0 and η > 0
with the following property: for each 0 < ∆ ≤ ∆0 there is a t0 (∆) such that
for all t0 ≥ t0 (∆), the inequality

V
¡
θu∆(t0)

¢
< V (θt0)− η∆ (28)

holds.

Proof. Let ρ > 0 be such that (13) holds. For each 0 < ε < ρ, define ∆0 (ε)
by (20) with ρ is replaced by ε. For ∆ ≤ ∆0 (ε) consider a t0 ≥ t∆ such
that

°°θt0 − θ
°° ≤ ε holds, and therefore

°°θu∆(t0) − θ
°° ≤ 2ε by Lemma 1. To

simplify notation, set θ0 = θt0 and θ00 = θu∆(t0). By taking Taylor expansions
of V and ∇V , we obtain

V (θ00)− V (θ0) = ∇V (ζ)T (θ00 − θ0)

= ∇V ¡θ¢T (θ00 − θ0) +
£∇V (ζ)−∇V ¡θ¢¤T (θ00 − θ0)

= ∇V ¡θ¢T (θ00 − θ0) +
¡
ζ − θ

¢T ∇2V (ζ 0) (θ00 − θ0) (29)

with ζ ∈ [θ0, θ00] and ζ 0 ∈ £ζ, θ¤. ([θ0, θ00] = {αθ0 + (1− α) θ00 : 0 ≤ α ≤ 1},
etc.) Since B

¡
θ, 2ε

¢
is convex, ζ, ζ 0 ∈ B

¡
θ, 2ε

¢
. From Lemma 3,

θ00 − θ0 = −f ¡θ¢∆+ q1 (t
0,∆) + q2 (t

0,∆) , (30)

where
kq1 (t,∆)k ≤ C1∆ε+ C2∆

2

with C1, C2 given by (27), and where limt0→∞ q2 (t
0,∆) = 0. Since θ /∈ Θ0, it

follows from (11) that ∇V ¡θ¢T f ¡θ¢ = η1 > 0. Let η satisfy 0 < η < η1 and
set η̃ = η1 − η. Substituting (30) into (29), we obtain

V (θ00)− V (θ0) = −η1∆

− ¡ζ − θ
¢T ∇2V (ζ 0) f ¡θ¢∆

+
h
∇V ¡θ¢T + ¡ζ − θ

¢T ∇2V (ζ 0)i q1 (t0,∆)
+
h
∇V ¡θ¢T + ¡ζ − θ

¢T ∇2V (ζ 0)i q2 (t0,∆) . (31)
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Set
L1 = max

θ∈K̃
k∇V (θ)k , L2 = max

θ∈K̃

°°∇2V (θ)°° (32)

and C3 = L1 + 2ρL2. Now choose ε small enough that

2εL2max
θ∈K̃

|f (θ)| < η̃

3
, C1C3ε <

η̃

6

and also so that
C2C3∆0 (ε) <

η̃

6
.

Set ∆0 = ∆0 (ε). Then, for any 0 < ∆ ≤ ∆0, if we choose t0 (∆) ≥ t∆ so that
t ≥ t0 (∆) implies °°θt0 − θ

°° ≤ ε

and
C3q2 (t,∆) <

η̃

3
∆,

it follows from (31) that

V (θ00) < V (θ0)− η1∆+ η̃∆ = V (θ0)− η∆,

holds when t0 ≥ t0 (∆), as asserted.

Now we obtain (b) of the Proposition.

Lemma 5 Under the hypotheses of Lemma 4, if θt → θ∞ ∈ Θ, then f (θ∞) =
0, i.e. θ∞ ∈ Θ0.

Proof. Suppose to the contrary that θ∞ /∈ Θ0. Then by Lemma 4, for all
sufficiently large t, V

¡
θu∆(t)

¢
< V (θt) − η∆ holds for some η > 0,∆ > 0.

Since u∆ (t) ≥ t+1→∞ as t→∞, it follows from θt → θ∞ that θu∆(t) → θ∞,
and therefore from the continuity of V , that V (θ∞) ≤ V (θ∞) − η∆, which
is impossible. Hence, θ∞ ∈ Θ0.

The final lemma yields (c) of the Proposition. It is the first to require
d = 1. Under this condition, for every θ ∈ Θ for which f

¡
θ
¢ 6= 0, it follows

from (11), the Mean Value Theorem, and the continuity of ∇V (θ) that there
exist m > 0, ρ > 0 such that¯̄

V (θ)− V
¡
θ
¢¯̄ ≥ m

°°θ − θ
°° (33)

holds for all θ ∈ B
¡
θ, 2ρ

¢
.
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Lemma 6 (cf. Lemma P.16 of D&F). Under the assumptions of the Propo-
sition, no point θ ∈ Θ for which f

¡
θ
¢ 6= 0 can be a limit point of θt. Therefore

K ⊆ Θ0.

Proof. Suppose, to the contrary, that there is a θ ∈ Θ with f
¡
θ
¢ 6= 0 (and

therefore with η1 = ∇V
¡
θ
¢T

f
¡
θ
¢
> 0) that is a limit point of θt. Choose ρ

so that (13) is satisfied, and also so that

f (θ) 6= 0 (34)

and (33) hold for all θ ∈ B
¡
θ, 2ρ

¢
. For ∆0 as in the proof of Lemma 4,

choose ∆, η0 > 0 so that

∆ ≤ min {∆0, ρm} , η0 < min {η1, 1} . (35)

Then Lemma 4’s proof shows that, for any subsequence θt0 that converges to
θ, the inequality

V
¡
θu∆(t0)

¢
< V (θt0)− η0∆ (36)

holds for all t0 large enough. The sequence of values θu∆(t0) appearing on
the l.h.s. of (36) does not necessarily change with t0. Since δt need not be
monotonically decreasing, all that can be asserted is that for t00 > t0 ≥ t∆,
one has u∆(t00) ≥ u∆(t

0), with u∆(t
00) > u∆(t

0) holding for t00 ≥ u∆(t
0). The

latter inequality guarantees that θu∆(t0) takes on infinitely many values of θt.
From this fact and (36), and from V (θt0)→ V

¡
θ
¢
, we can conclude that, for

a given 0 < η < η0, the sequence θt enters each of the disjoint sets

Rη∆ =
©
θ ∈ B

¡
θ, 2ρ

¢
: V (θ) ≤ V

¡
θ
¢− η∆

ª
and

S 1
2
η∆ =

n
θ ∈ B

¡
θ, 2ρ

¢
: V (θ) > V

¡
θ
¢− η

2
∆
o

infinitely often. Let θτ 0 denote the subsequence of last values of θt in Rη∆

before a next entry θτ 0+n0 in S 1
2
η∆. Some subsequence θτ 00 of θτ 0 must have a

limit θ̃. Since V (θτ 00+1) > V
¡
θ
¢− η∆ and V (θτ 00+1)−V (θτ 00)→ 0, we must

have V
³
θ̃
´
= V

¡
θ
¢− η∆. Therefore, from (33) and (35),°°°θ̃ − θ

°°° < ρ. (37)
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Thus, f
³
θ̃
´
6= 0 by (34). With ∆0 (ρ) as in (20) and L1 as in (32), we can

conclude from Lemma 4 that there exist e∆ > 0 satisfying

e∆ < min

½
ρ

2
,

η

6L1
∆,∆0 (ρ)

¾
, (38)

and 0 < eη < 1 and τ 00
³e∆´ ≥ te∆ such that V ¡θu e∆(τ 00)¢ < V (θτ 00)− eη e∆ holds

for all τ 00 ≥ τ 00
³e∆´. Hence

V
¡
θu e∆(τ 00)

¢
< V

¡
θ
¢− η∆− eη e∆. (39)

Because θτ 00 → θ̃, we can, by taking a larger τ 00
³e∆´ if necessary, further

obtain °°°θτ 00 − θ̃
°°° ≤ e∆, (40)

for all τ 00 ≥ τ 00
³e∆´, and therefore, from Lemma 1, also

max
τ 00≤u≤u e∆(τ 00)

°°°θu − θ̃
°°° ≤ 2e∆ < ρ. (41)

Due to (37), the last inequality shows that

θu ∈ B
¡
θ, 2ρ

¢
, τ 00 ≤ u ≤ ue∆ (τ 00) . (42)

With (39), this yields the key result: θue∆(τ 00) ∈ Rη∆. Since θτ 00 is a last value in
Rη∆ before an entry in S 1

2
η∆, at time τ

00+n00, we must have τ 00+n00 < ue∆ (τ 00)
whenever τ 00 ≥ τ 00

³e∆´. For these τ 00, it follows from (40), and (41) that

kθτ 00 − θτ 00+n00k ≤ 3∆̃. Therefore, from (38), we have

V (θτ 00+n00) ≤ V (θτ 00) + |V (θτ 00)− V (θτ 00+n00)|
≤ V

¡
θ
¢− η∆+ L1 kθτ 00 − θτ 00+n00k

≤ V
¡
θ
¢− η∆+ 3∆̃L1

< V
¡
θ
¢− η

2
∆,

by virtue of (38). But this contradicts θτ 00+n00 ∈ S 1
2
η∆. Thus the proofs of

Lemma 6 and the Proposition are complete.

13



Remark. The gap in the proof given in D&F is the lack of verifica-
tion of (42), which seems to require a condition that forces

°°θ − θ
°° to be

small when
¯̄
V (θ)− V

¡
θ
¢¯̄
is, as (33) does. No such condition is imposed

in D&F. When d > 1 and θ ∈ Θ is such that ∇V ¡θ¢ 6= 0, the level sets©
θ ∈ Θ : V (θ) = V

¡
θ
¢ª
will be nonempty, so (33) will fail for every m > 0.
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