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ABSTRACT
Let  A×B  be the product space of two sets  A  and  B  which is divided into a (pairs representing the
same entity) and nonmatches (pairs representing different entities).  Linkage rules are those that
divide A×B  into links (designated matches), possible links (pairs for which we delay a decision),
and nonlinks (designated nonmatches).  Under fixed bounds on the error rates, Fellegi and Sunter
(1969) provided a linkage rule that is optimal in the sense that it minimizes the set of possible links.
The optimality is dependent on knowledge of certain joint inclusion probabilities that are used in a
crucial likelihood ratio.  In applying the record linkage model, assumptions are often made that allow
estimation of weights that are a function of the joint inclusion probabilities.  If the assumptions are
not met, then the linkage procedure using estimates computed under the assumptions may not be
optimal.  This paper describes a method for estimating weights using the EM Algorithm under less
restrictive assumptions.  The weight computation automatically incorporates a Bayesian adjustment
based on file characteristics.
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1.  INTRODUCTION
   The paper describes a method for using the EM Algorithm (Dempster, Laird, and Rubin 1977, Wu
1983) to improve computational procedures in applications of the Fellegi-Sunter model of record
linkage.
   Let A×B be the product space of two sets A and B which is divided into matches (pairs
representing the same entity) and nonmatches (pairs representing different entities).  Linkage rules
are those that divide A×B  into links (designated matches), possible links (pairs for which we delay
a decision), and nonlinks (designated nonmatches).  Under fixed bounds on the error rates, Fellegi
and Sunter (1969, hereafter denoted FS) provided a linkage rule that is optimal in the sense that it
minimizes the set of possible links.  The optimality is dependent on knowledge of certain joint
inclusion probabilities that are used in a crucial likelihood ratio.    
   In applications, an independence assumption is made that allows estimation of joint inclusion
probabilities.  If the independence assumption is not valid (Winkler 1985, Kelley 1986), then linkage
rules based on the estimated probabilities may not be optimal.
   The remainder of this paper contains a methodology for estimating weights under a less restrictive
assumption.  Section two is divided into four parts.  The first part provides a summary of the FS
Model of record linkage.  The second describes the Conditional Independence Assumption and how
computation is simplified under it.  The third part introduces a more general class of distributions
than those satisfying the Conditional Independence Assumption.   For the new class it shows how
simple agreement/disagreement weights are computed using the EM Algorithm.  The fourth part
presents a procedure for deriving frequency-based weights when an additional assumption is met.



The assumption is weaker than the assumption of FS (pp. 1207-1210).
   The discussion in the third section comprises four components.  The first describes convergence
properties of the EM Algorithm.  The second describes how the EM Algorithm automatically makes
as Bayesian adjustment based on file characteristics.  The third discusses the computation of
frequency-based weights.  The fourth points out how the EM Algorithm, with  possible enormous
increase in computation, can be extended to parameter estimation for a reasonably general class of
distributions.  The final section is a summary.

2.  MODEL AND COMPUTATIONAL PROCEDURES
2.1.  Fellegi-Sunter Model
   The FS Model uses an decision-theoretic approach embodying principles first used in practice by
Newcombe (Newcombe et al. 1959).  To give an overview, we describe the model in terms of
ordered pairs in a product space.  The presentation closely follows FS (pp. 1184-1187).
   There are two populations A and B whose elements will be denoted by  a  and  b.  We assume that
some elements are common to A and B.  Consequently the set of ordered pairs

     A×B = {(a,b): aεA, bεB} 

is the union of two disjoint sets of matches

     M = {(a,b): a=b, aεA, bεB}

and nonmatches

     U = {(a,b): aPb, aεA, bεB}.

   The records corresponding to A and B are denoted by  α(a) and ß(b), respectively.  The comparison
vector τ associated with the records is defined by:

  τ[(α(a),ß(b))] L {τ1[(α(a),ß(b))],τ2[(α(a),ß(b))],···,τK[(α(a),ß(b))]}.

Where confusion does not arise, the function  τ  on  A×B  will be denoted by τ(α,ß), τ(a,b), or τ.  The
set of all possible realizations of τ is denoted by  Γ.  
   The conditional probability of τ(a,b) if (a,b)εM  is given by

       m(τ) L P{τ[α(a),ß(b)]|(a,b)εM}

          =   Σ     P{τ[α(a),ß(b)]}·P[(a,b)|M].
           (a,b)εM

       
Similarly we denote the conditional probability of τ if (a,b)εU  by u(τ).
   We observe a vector of information  τ(a,b)  associated with pair  (a,b) and wish to designate a pair
as a link (in set  A1), a possible link (in set  A2), or a nonlink (in set  A3).  We let  L  denote a linkage
rule that divides  A×B  into A1, A2, and A3.  We say that a Type I error has occurred if rule  L  places
mεM in A3,



     P(A3|M) =  Σ  m(τ)·P(A3|τ),
                      τεΓ

and a Type II error if  L  places  uεU  in  A1,

     P(A1|U) =  Σ  u(τ)·P(A1|τ).
                     τεΓ

   FS define a linkage rule  L0  with associated sets  A1,  A2, and  A3  that is optimal in the following
sense:

   THEOREM (Fellegi and Sunter 1969).  Let  L' be a linkage rule with associated sets  A1',  A2', and
A3' such that  P(A3'|M) = P(A3|M)  and P(A1'|U) = P(A1|U).  Then  P(A2|U) @ P(A2'|U)  and  P(A2|M)
@ P(A2'|M).

   In other words, if  L' is any competitor of  L0  having the same Type I and Type II error rates (which
are both conditional probabilities), then the conditional probabilities (either on set  U  or  M) of not
making a decision under rule  L'  is always greater than under  L0.  The FS linkage rule is actually
optimal with respect to any set  Q  of ordered pairs in  A×B  if we define error probabilities  PQ  and
a linkage rule  LQ  conditional on  Q.  Thus, it may be possible to define subsets of  A×B  on which
we make use of differing amounts and types of available information.
2.2.  Computational Procedures
   The subsection is divided into four parts.  The first describes the general form of the linkage rule.
The second presents a simplification of the computational procedures under the Conditional
Independence Assumption.  The third contains a weaker assumption and the estimation of parameters
using the EM Algorithm.  The fourth extends parameter estimation to frequency-based weights.
2.2.1.  General Form of Linkage Rule
   To provide a background for understanding why specific computational procedures are used, we
consider the following likelihood ratio   

       R L R[τ(a,b)] = m(τ)/u(τ). (2.1)

   If the numerator is positive and the denominator is zero in (2.1), we assign a fixed very large
number to the ratio.  The FS linkage rule takes the form:

   If  R > Tµ, then denote  (a,b)  as a link.

   If Tλ @ R @ Tµ, then denote  (a,b)  as a possible link. (2.2)

   If  R < Tλ, then denote  (a,b)  as a nonlink.

The cutoffs Tλ and Tµ are determined by the desired error rate bounds µ and λ on the false match
rates and false nonmatch rates, respectively.
2.2.2.  Simplification Under Conditional Independence Assumption



   In practice, computation is simplified two ways.  The first is by the Conditional Independence
Assumption of FS:    

        m(τ) = m1(τ1)·m2(τ2)···mK(τK)  and

        u(τ) = u1(τ1)·u2(τ2)···uK(τK)  

where for  i = 1, 2, ···, K

        mi(τi) = P(τi | (a,b)εM)  and

        ui(τi) = P(τi | (a,b)εU).

   The second is to use a computationally convenient function of the ratio in (2.1).  Log2  is used.  We
then have

   W L W(τ) = Log2[m(τ)/u(τ)] = W1 + W2 + ··· + WK, (2.3)

where  Wi L Log2[mi(τi)/ui(τi)]  for i = 1, 2, ···, K.  We call  W  the total comparison weight
associated with a pair and  Wi, i = 1, 2, ···, K, the individual comparison weights.
2.2.3.  Weaker Assumption and EM Algorithm
   To describe the computational assumption that is weaker than the Conditional Independence
Assumption, we need some additional background.  For the remainder of the paper, unless otherwise
stated, we will assume that each component  τi, i = 1, 2, ··· K, in  τ  represents a two state comparison
(e.g., agree/disagree)  and  define the marginal comparison events by

      Bi
 L {(a,b) | τi(a,b) = τi

o}

for one fixed state of  τi
o. 

   Let  C1, C2, ···, CK  be any reordering of B1, B2, ···, BK.  On any set of pairs  Q  in  A×B

        P(τεC1‚C2‚···‚CK | Q) = 

         P(τεC1 | Q)·P(τεC2 | C1, Q)···P(τεCK | C1,···,CK-1,Q). (2.4)

For  τεΓ  we can consider each  P(τεCi|C1,···,Ci-1,Q)  as the successive incremental discriminating
power of  Ci  in  Q, i = 1, 2, ···, K.  The discriminating power is dependent on the ordering  C1, C2,
···, CK, and the pairs in  C1‚C2‚···‚CK‚Q.  For record pairs  rj, j = 1, 2, ···, N, from  Q, index the
comparison vectors  τj

i  as follows:

  τj
i =   W = 1  if field  i  agrees for record pair rj 

           X
           Y  = 0  if field  i  disagrees for record pair rj. 

   The elements in Q = (Q‚M)U(A‚U) are distributed according to a finite mixture with the



unknown parameters  Φ = (m, u, p)  where  p  is the proportion of matched pairs in  Q.  Let  x  be
the complete data vector g= <τj,gj>  where

   gj = (1,0)  if  rj ε M‚Q  and

   gj = (0,1)  if  rj ε U‚Q.

   Then the complete data log-likelihood (Dempster, Laird, and Rubin 1977, pp. 15-16) is given by

                       N
  ln f(x | Φ) =  Σ  gj · <ln P(τj | M‚Q), ln P(τj | U‚Q)>   
                      j=1

           N
         + Σ  gj · <ln p, ln(1-p)>.
          j=1      

Fitting using the EM Algorithm will be performed under the following assumption: There exist
vector constants  m L (m1, m2, ···, mK)  and u L (u1, u2, ···, uK)  such that, for all  τεΓ,

                         K      τi          (1-τi)
  P(τ | M‚Q) =  Π   mi   (1-mi)        
                        i=1

and (2.5)

                         K     τi         (1-τi)
  P(τ | U‚Q) =  Π   ui   (1-ui).        
                        i=1

Probabilities  mi  and  ui, i = 1, 2, ···, K, are constant for all representations  τ  of pairs in  Q.  The set
of probabilities of form (2.5) includes those obtained by reorderings as in (2.4), provided the
reordering is fixed for all  τεΓ.  To avoid trivialities, we assume that 0 < mi, ui < 1, i = 1, 2, ···, K. 
   If the Conditional Independence Assumption holds, then the mi  and  ui, i = 1, 2, ···, K, are the usual
marginal probabilities as given in FS (pp. 1194-1195).  They necessarily are independent of any
reordering of B1, B2, ···, BK.  When the Conditional Independence Assumption does not hold
probability distributions of form (2.5) constitute a more general class than those obtained under the
Conditional Independence Assumption. 
  We begin the EM Algorithm with estimates of the unknown parameter <m̂, û, p̂>.  For the E-step
under (2.5), replace  gj  with 

<P(M‚Q|τj),P(U‚Q|τj)>  where



                              K       τj
i        (1-τj

i)
                          p̂  Π   m̂i   (1-m̂i)        
                             i=1
P(M‚Q|τj) L ---------------------------------------------------------
                             K      τj

i          (1-τj
i)               K       τj

i        (1-τj
i)

                         p̂  Π   m̂i    (1-m̂i)        + (1-p̂)   Π    ûi    (1-ûi)        
                            i=1                                        i=1

and (2.6)

                                   K      τj
i        (1-τj

i)
                         (1-p̂)  Π   ûi    (1-ûi)        
                                  i=1
P(U‚Q|τj) L ---------------------------------------------------------.
                           K       τj

i         (1-τj
i)              K       τj

i       (1-τj
i)

                       p̂  Π   m̂i    (1-m̂i)        + (1-p̂)  Π    ûi    (1-ûi)        
                          i=1                                        i=1

   For the  M  step, the complete data log-likelihood can be separated into three maximization
problems.  Setting the partial derivatives equal to zero and solving for m̂i, i = 1, 2, ···, K, yields:

            N
            Σ   P(M‚Q | τj) · τj

i 
           j=1
  m̂i = -------------------------. (2.7)
           N
           Σ   P(M‚Q | τj) 
          j=1

Estimates  ûi, i = 1, 2, ···, K, are derived in a similar manner.  The matrix of second partial derivatives
can be shown to be negative-definite.  The estimate of the proportion of matched pairs is given by

           N
           Σ   P(M‚Q | τj) 
          j=1
  p̂  = ---------------------.
              N

2.2.4.  Extension to Frequency-Based Weights
   This section considers a procedure for extending simple agreement/disagreement weights to
weights that account for frequency.  We call such a procedure a dispersion.  When the more stringent
assumptions of FS (pp. 1207-1210) are satisfied our dispersion procedure agrees with theirs.  If the
agreement/disagreement weights found via the EM Algorithm coincide with the
agreement/disagreement weights found via the FS procedures, then the frequency-based weights also
coincide.



   Frequency-based weights are useful because they can account for the fact that a specific surname
pair such as (Zabrinksy, Zabrinsky) occurs less often than a surname pair such as (Smith, Smith). 
   We need some background material before presenting the computational procedures for frequency-
based weights.
   We observe that if, for some  i  and  k,

   mi = P( τk = 1 | M‚Q) 

and (2.8)

   ui = P( τk = 1 | U‚Q), 

then the  kth  comparison is independent of the other  K-1  comparisons.  The right hand sides of
(2.8) are just the appropriate marginal inclusion probabilities.  Note that  mi  and  ui, i = 1, 2, ···, K,
of this paper generally differ from the  m1, m2, m3, u1, u2, and  u3  in FS (pp. 1194-1195, 1207-1210).
   We define a random variable  τ^k by

   τ^k = µj
k  if the  kth  comparison pair takes value  µj

k 

where  µj
k, j = 1, ···, Lk, is an enumeration of the specific values of the kth comparison.  We make

two assumptions:   

  A1.  Agreement/disagreement in the  kth  comparison is independent of
          the other  K-1  comparisons.

  A2.  There exists a comparison  k'  such that the specific realizations 
          of  τ^k  are pairwise independent of agreement/disagreement in the
          k'th  comparison.  
   
   If we consider one comparison, say of agreement/disagreement in surname, then we can perform
EM fitting under a restricted version of (2.5) by specifying that one of the  (mi,ui)  must converge to
the marginal probabilities (as in (2.8)) associated with surname.  We can, thus, always find a
comparison satisfying assumption A1 for the restricted class of distributions.
   Assumption A2 is a weaker form of independence assumption than the one considered by FS (p.
1208).  It allows dispersion of the agreement/disagreement weight obtained under assumption A1
to frequency-based weights. 
  In a manner similar to the dispersion of FS (pp. 1207-1210), we define                  

    Nk(µi
k) = P( τ^k = µi

k, τk'=1),
               
     Vk(µi

k) = P( τ^k = µi
k),

    c = # pairs in  Q, and

    N = # pairs in  M‚Q.



Then, for i = 1, 2, ··· Lk, 
                      
    c · Nk(µi

k) = N · P( τ^k = µi
k | M‚Q) · P( τk'=1 | M‚Q)  + (2.9)

                             
                (c - N) · P( τ^k = µi

k | U‚Q) · P( τk'=1 | U‚Q)  

and 
      
  c · Vk(µi

k) = N · P( τ^k = µi
k | M‚Q) + (2.10)

                         
            (c - N) · P( τ^k = µi

k | U‚Q).
  
   In (2.9) and (2.10)  c , Nk(µi

k), Vk(µi
k), i = 1, 2, ··· Lk, can be computed directly because they are

based on observed file characteristics.  The marginal probabilities  P( τk=1 | M‚Q)  and  P( τk=1 |
U‚Q)  and the number of matches  N  in  M‚Q  can be computed using the estimated parameters of
(2.4) that are obtained by the EM Algorithm.  Equations (2.9) and (2.10), thus, consist of two
equations to be solved for the two unknowns  P( τ^k = µi

k | M‚Q)  and  P( τ^k = µi
k | U‚Q), i = 1, 2,

··· Lk.

3.  DISCUSSION
   This section is divided into four parts.  The first discusses the convergence properties of the EM
Algorithm.  The second describes how the EM Algorithm automatically incorporates a Bayesian
adjustment of weights for file characteristics.  The third considers the extension to frequency-based
weights.  The fourth deals with the extension of the EM Algorithm to parameter estimation for a
reasonably general class of distributions.
3.1.  Convergence Properties of EM Algorithm
   This paper's application of the EM Algorithm most closely resembles the more general approach
of Hasselblad (1969).  Hasselblad noted the increase in likelihood on successive steps but was unable
to prove convergence.  Haberman (1977) proved convergence in a substantially more general setting.
He observed that the limiting value was dependent of the initial values of the parameters and, thus,
not necessarily unique.
   Wu (1983) noted that limiting values of the EM Algorithm are stationary points that can either be
saddle points or local maxima.  He made the conjecture that there is unlikely to be any general
condition that assures convergence to a unique maximum.  Wu did observe, however, that if the
likelihood is unimodal, if the estimated parameters have at most one stationary limiting point, and
if a technical condition holds (which it does for the distributions of this paper), then the estimated
parameters converge to the unique maximizer of the likelihood.  The implication is that, while the
EM algorithm of this paper is of value in accounting for failures of the Conditional Independence
Assumption, several starting points for the EM Algorithm should be used.  The estimated parameters
associated with the largest local maximum are the ones that are used.  If we can show that there is
at most one stationary limiting point, then the parameter estimates will necessarily converge to it.
3.2.  Bayesian Adjustment of Weights
   If weights are computed via Method II of FS (p. 1194), then they correspond to observed
characteristics of the files.  Similarly, weights computed using the application of the EM Algorithm
of this paper will also correspond to file characteristics.   



   If, during a file updating project, we use as initial weights those weights obtained from an earlier
project using different files, then the EM Algorithm will automatically adjust the weights to the
characteristics of the new files.  3.3.  Extension to Frequency-Based Weights
   Under the more stringent assumptions of FS (pp. 1207-1210) frequency-based weights computed
using the techniques of this paper agree with those computed using Method II of FS.  This follows
because the dispersion method of this paper is identical to the dispersion method of FS and the there
can exist at most one local maximum of the likelihood.
   The chief value of assumptions like Assumptions A1 and A2 of this paper is that they allow
dispersal of agreement/disagreement weights with little increase in computation.  Although the EM
Algorithm might be extended to allow direct computation of frequency-based weights, such an
extension will generally require enormous increases in computation.
3.4.  Extension of Computational Procedures
   Distributions of form (2.5) are not sufficiently general to deal with the joint relationship between
A1 and A2.  Form (2.5) yields distributions having essentially independent effects.  Generally, use
of such distributions does not allow effective modeling of events of the form

    P(τεA1
x
‚A2

x| A3‚M‚Q)  and  P(τεA1
x
‚A2

x| A3‚U‚Q)

where  Ai
x  represents the comparison event or its complement.  A3  represents any other comparison

or set of comparisons.
   Rather than give a fully rigorous development, we will consider a relatively simple case.  There
are two comparisons that are independent of other comparisons but may not be independent of each
other.  Due to the form of the independence, we can suppress any parameters associated with
comparisons other than the first two.
   There exist vector constants  m L (m1, m2, m12)  and 
u L (u1, u2, u12)  such that, for all  τεΓ

                             τ1·τ2         (1-τ1)·τ2    τ2       (1-τ2)    
  P(τ | M‚Q) =  m1     ·(1-m1)          ·m2  ·(1-m2)           

             τ1·(1-τ2)         (1-τ1)·(1-τ2)     
        ·m12          ·(1-m12)                
                    
and (3.1)

                           τ1·τ2       (1-τ1)·τ2    τ2       (1-τ2)    
  P(τ | U‚Q) =  u1     ·(1-u1)          ·u2  ·(1-u2)           

               τ1·(1-τ2)         (1-τ1)·(1-τ2)       
           ·u12          ·(1-u12)               

Representations of form (3.1) with additional parameters  m12  and  u12  can account for the
interaction of events  A1  and  A2.  
   In special cases, form (2.5) might allow modelling such pairwise interactions.  If, in (3.1),  m1 =



m12  and  u1 = u12, we have independence and form (3.1) agrees with form (2.5).   Formal extension
to general cases is straightforward.  
   Use of the EM Algorithm with distributions of form (3.1) is straightforward.  Probability
distributions of form (2.5) in the  E  step (2.6) are replaced with distributions of form (3.1).  The M-
step estimates still take form (2.7).  We note that two additional parameters  m12  and  u12  must be
estimated.  The reason the extension is straightforward is that the complete data log-likelihood of
the  M  step takes essentially the same form it did for the simpler class of distributions (2.5).
   To create classes of distributions that more effectively model multiple interactions of events
necessitates straightforward extension of the probability distributions of form (3.1).  In practice, we
would likely select just a few interactions to model in order to minimize the increase in computation
involved with the EM Algorithm.

4.  SUMMARY
   This paper provides a method of estimating matching weights in the Fellegi-Sunter model of record
linkage.  Under an assumption weaker than the usual Conditional Independence Assumption, the
estimates are obtained via the EM Algorithm.  The procedure automatically incorporates a Bayesian
adjustment for file characteristics.

This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has
undergone a Census Bureau review more limited in scope than that given to official Census Bureau
publications.  This report is released to inform interested parties of research and to encourage
discussion The shorter version of this paper was presented at the American Statistical Association
Annual Meeting and appeared in the 1988 Proceedings of the Section on Survey Research Methods
(pp. 667-671).  
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