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Much empirical economic research today involves estimation of tightly specified time series 
models that derive from theoretical optimization problems. Resulting conclusions about underly- 
ing theoretical parameters may be sensitive to imperfections in the data. We illustrate this fact 
by considering sampling error in data from the Census Bureau’s Retail Trade Survey. We find 
that parameter estimates in seasonal time series models for retail sales are sensitive to whether a 
sampling error component is included in the model. We conclude that sampling error should be 
taken seriously in attempts to derive economic implications by modeling time series data from 
repeated surveys. 

1. Introduction 

The rational expectations revolution has transformed the methodology of 
macroeconometric research. In the new style, the researcher typically begins 
by specifying a dynamic optimization problem faced by agents in the model 
economy. Then the researcher derives the solution to the optimization 
problem, expressed as a stochastic model for some observable economic 
variable(s). A trademark of research in this tradition is that each of the 
parameters in the model for the observable variables is endowed with a 
specific economic interpretation. The last step in the research program is the 
application of the model to actual economic data to see whether the model 
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conforms with the data. The trend toward this style of research has been 
especially striking in the consumption literature. 

Most investigators - especially those using aggregate data - have paid 
scant attention to possible shortcomings of available data series as measure- 
ments of the theoretical variables appearing in their models. Such shortcom- 
ings can have many sources, as we discuss later in section 2, and in detail for 
the particular case of retail sales data in appendix A.2. In principle, data 
imperfections could influence the results of empirical investigations, and 
thereby change the economic interpretation of the findings. Partly in reaction 
to this possibility, Wilcox (1991) investigated the source data and estimation 
methods used to construct aggregate U.S. consumption data. Wilcox dis- 
cussed a number of deficiencies in the data and provided, for some of them, a 
preliminary assessment of their significance for empirical research on con- 
sumption-related issues. 

This paper builds on that earlier effort. Here, we focus on data from the 
Retail Trade Survey conducted by the U.S. Bureau of the Census. Our 
interest in these data is motivated by two considerations: First, they are an 
important ingredient in the construction of personal consumption expendi- 
tures in the national income accounts; and second, sampling error in the 
retail sales estimates is one of the problems of potential significance identi- 
fied in Wilcox (1991). Furthermore, there is some information available 
concerning the sampling error properties of disaggregated retail sales series. 

Our objective is to assess the sensitivity of parameter estimates for time 
series models of retail sales data to the treatment of sampling error. We carry 
out our investigation using for illustration the ‘airline’ model of Box and 
Jenkins (1976): 

(1 -B)(l -B12)S, = (1 - e,>(1- 42B12)btY (1.1) 

where B is the backshift operator and b, is a white-noise innovation. In 
appendix A.1 we give one set of economic assumptions consistent with the 
prediction that S, - interpreted as the level of retail sales - should follow 
the model (1.1). The key assumption turns out to be that tastes follow the 
stochastic process 

(l-B)(l-B12)T,=vt, 

where V~ is a white-noise shock to tastes. We show in appendix A.1 that each 
of the parameters in (1.1) can be given a precise interpretation in terms of 
the underlying economic model we present there. In particular, the innova- 
tion variance ai measures the variance of ‘news’, where news involves the 
shock to tastes as well as the shock to labor income. The nonseasonal MA 
parameter 0r equals one minus the depreciation rate of the durable 
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good - the same interpretation of this parameter as obtained in the model 
studied by Mankiw (1982). The seasonal MA parameter 8,, is a function of 
the ratio of aVz, the variance of the innovations in tastes, to aEz, the variance 
of the innovations in labor income. As this variance ratio goes to zero, 0i2 
approaches unity, the seasonal MA polynomial cancels with the seasonal 
differencing operator [see Bell (1987)1, and the model simplifies to 

(1 - B)S, = seasonal dummies + (1 - 8,B)b,. (1.2) 

Therefore, in the context of the model set out in the appendix A.l, we would 
interpret evidence derived from levels data that 0,, is close to unity as 
suggesting that tastes follow a deterministic seasonal pattern. 

In deference to properties of the data discussed in sections 3 and 5, we 
ignore that our economic model, taken literally, applies to the data in levels, 
and interpret S, in (1.1) as referring to the logarithm of retail sales in a 
particular category. In concrete terms, our goal is to investigate the robust- 
ness of estimates of 13,, f3i2, and CT: in an airline model for log(S,) to the 
presence of sampling error in the data. Our strategy for carrying out this 
investigation is simple: we apply model (1.1) to the (logarithms of the) retail 
sales data twice, once augmenting it with an explicit model for the sampling 
error in the retail sales data, and once not. We then examine the sensitivity 
of the point estimates of each of the above-mentioned parameters of the 
signal model to the presence or absence of the sampling error component in 
the overall model for the observed series. We focus on changes in point 
estimates because of the difficulties involved in making formal probability 
statements about parameters (particularly 0,,) that are subject to boundary 
constraints, and, more importantly, because of the difficulties in developing 
inferences that allow for uncertainty in the estimation of the sampling error 
model. 

We should stress that we are not wedded to the airline model either from a 
statistical or an economic point of view. From a statistical perspective, we 
believe that the model’s capability of allowing a changing pattern of seasonal- 
ity is useful; however, there are other ways to approach the general problem 
of changing seasonality, and an alternative approach might ultimately prove 
more successful than the airline model. As far as the economics are con- 
cerned, we acknowledge that other models undoubtedly could be proposed 
that would endow the parameters of the airline model with different inter- 
pretations than the ones we give. Furthermore, other underlying economic 
structures could, and have been, proposed that imply that spending should 
take some form other than the airline model. In any such models, however, 
the issue we study here would be relevant: how robust are the point estimates 
of the parameters - and hence the economic interpretation of the results - to 
errors in the data? In our view, the paper should not be seen as hostile to the 
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predominant research approach in macroeconometrics of the past two 
decades; on the contrary, we are suggesting that explicit modeling of the 
sampling error may be a step toward placing the inferences drawn from such 
an approach on a firmer empirical foundation. 

The paper is organized as follows. Section 2 provides some background 
information on repeated economic surveys. Details of the Census Bureau’s 
monthly Retail Trade Survey are deferred to appendix A.2. We use the 
information given there as a guide in the construction of seasonal time series 
models for the sampling errors in retail sales estimates in section 3. An 
analytical exercise in section 4 shows that the sampling errors can have 
important effects on the seasonal and nonseasonal autocorrelation properties 
of the observed time series in comparison to those of the true, unobserved 
(signal) series. In section 5 we analyze seven retail sales time series (monthly 
sales of grocery stores, eating places, household appliance stores, men’s and 
boys’ clothing stores, hardware stores, radio and TV stores, and drinking 
places). We first fit airline models (with appropriate regression terms for 
calendar variation and outliers) to the series ignoring the sampling errors, 
and then refit the models with a sampling error component included, per- 
forming this analysis both for nominal and real data. We find that estimates 

of 012 and at in some cases are profoundly affected even by seemingly 
moderate amounts of sampling error, but find little effect on estimates of 0, 
for any of the series. Section 6 provides a summary and conclusions. 

2. Background 

Many published economic time series are estimates derived from repeated 
surveys. Examples include, but are by no means limited to, time series of 
retail and wholesale sales and inventories; building permits issued and 
housing starts; manufacturers’ shipments, inventories, and new orders; unem- 
ployment statistics; price indexes; and statistics on imports and exports. Many 
other macroeconomic series are aggregates derived from such series as these. 
Such data are subject to two general types of errors: sampling errors, which 
result when the estimates are obtained from a sample survey, rather than a 
complete census, of the relevant universe (of firms, households, etc.), and 
nonsampling errors, which are all other errors. The latter can often be 
thought of as biases, and include such things as definitional errors, reporting 
errors, nonresponse errors, sampling frame undercoverage, processing errors, 
etc. Government agencies conducting repeated economic surveys attempt to 
minimize nonsampling errors, and also perform special studies to try to 
assess their magnitude. However, nonsampling errors remain extremely dif- 
ficult to handle statistically, particularly for those analyzing published data. It 
is for this reason, and not because they are unimportant, that we will not deal 
with them in this paper. 



W? R. Bell and D. W. Wilcox, Sampling error in retail sales data 239 

There are series (for example, import and export statistics and retail sales 
of department stores) that are obtained from complete or essentially com- 
plete repeated censuses, and thus contain no sampling error, though they 
certainly are subject to nonsampling errors. Thus, the amount of sampling 
error in published time series ranges upward from zero, though government 
statistical agencies tend to avoid publishing series subject to very high levels 
of sampling error. Fortunately, sampling error is amenable to statistical 
treatment; in fact, government statistical agencies regularly publish estimates 
of sampling error variances. In regard to sampling error, therefore, analysis 
of published time series would seem to present a classical errors-in-variables 
problem, with the desirable situation of having known, or at least estimated, 
error variances. 

There is, unfortunately, a catch. The catch is that sampling errors from 
repeated surveys are often correlated over time. In general, sampling errors 
in repeated surveys can be autocorrelated if (1) time series for individual 
population units are autocorrelated and (2) samples at different time points 
are not drawn independently, e.g., if they have specified overlapping seg- 
ments. Drawing samples independently each time period is generally infeasi- 
ble operationally for many reasons, including the cost involved in doing this. 
Instead, repeated survey designs typically use samples that overlap for 
different time periods. If overlap persists only for some finite number, say 4, 
of time periods, and the nonoverlapping samples are drawn independently, 
then the sampling errors will follow a moving average model of maximum 
order q. Hausman and Watson (1985) used this idea in developing a model 
for sampling errors in the Current Population Survey (CPS), though nonover- 
lapping samples in the CPS are not quite drawn independently. 

The amount of autocorrelation present in sampling errors depends on the 
amount of sample overlap and the autocorrelation inherent in the individual 
units in the population. It can also depend on the estimation scheme used if 
the estimates use both past and present data to estimate current values, as in 
composite estimation in the Retail Trade Survey [Walter (197911. Unfortu- 
nately, available information on autocorrelation of sampling errors for partic- 
ular economic surveys is spotty. Government agencies do not regularly 
produce estimates of lagged covariances of sampling errors, though this has 
been done on occasion as part of special studies. This includes work done 
previously by the Census Bureau that underlies the sampling error models 
developed in the next section for some retail sales time series. To cite a few 
other examples: Bell and Hillmer (1990a, b) consider regional and national 
single and five or more unit housing starts time series, for which estimates 
produced by the Construction Statistics Division of the Census Bureau 
suggested the sampling errors exhibit at most very mild correlation at lag 1. 
They also consider a time series of teenage unemployment from the CPS, 
using an ARMA (1,l) model to approximate the autocorrelation structure of 
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the sampling errors. Train, Cahoon, and Makens (1978) produced the origi- 
nal estimates of sampling error autocorrelations for this and some other 
series from the CPS. Tiller (1990) discusses some preliminary work of 
Dempster and Miller to estimate autocorrelations for state level CPS data. 
These are, unfortunately, isolated examples, in part because information on 
the autocorrelation structure of sampling errors in data from economic 
surveys is not regularly produced. This situation may improve in the near 
future, as in recent years there has been more interest in this within 
government statistical agencies. The interest has been stimulated mostly by 
research into use of time series signal extraction techniques to remove some 
of the sampling error from estimates in repeated surveys, an idea originally 
suggested by Scott and Smith (1974) and Scott, Smith, and Jones (1977), and 
pursued more recently by Binder and Dick (1989), Bell and Hillmer (1990a, b), 
Eltinge and Fuller (1989), and Pfeffermann (1991). 

3. Modeling sampling errors in the RTS 

Bell and Hillmer (1990a), hereafter BH, develop a time series model for 
the sampling errors in (unbenchmarked) estimates of sales of eating places 
and of drinking places from the RTS. We briefly review the model developed 
in BH, apply it to some additional store categories from the RTS, and then 
consider some limitations of the model. Appendix A.2 should be consulted 
for the basics of the survey that are used here. (The references cited in 
appendix A.2 give further details on the RTS.) Given some of the problems 
noted in appendix A.2, and some additional problems mentioned in what 
follows, the models can only be regarded as crude approximations that are 
hoped to capture the most important aspects of the sampling error autoco- 
variance structure. Despite their limitations, use of such models seems 
preferable to ignoring the sampling error altogether. 

BH begin with a time series model for the sampling errors in the current- 
and previous-month Horvitz-Thompson (HT) estimates (see appendix A.2) 
in the RTS. Let Y,’ = S, + e; be the current-month (t) HT estimate and 
YL, = S,_1 + ey_l be the previous-month (t - 1) HT estimate, where S, is 
the unobservable true (signal) series and ei and e:‘_l are the sampling errors 
in the HT estimates. BH use identical models for both e\ and e:_ 1. Estimates 
of p = corr(ei, ey_ 1) are extremely high - typically exceeding 0.95. These 
values are probably inflated by businesses sometimes reporting the same 
figure for current- and previous-month sales, and perhaps also by the 
imputation procedures used (as noted in appendix A.2); in any case, given the 
current survey estimation procedures it is difficult to distinguish characteris- 
tics of ei from those of eT_,. BH use the model 

(3.1) 
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where m is the number of panels in the sample - currently three (four prior 
to September 1977). The same model is assumed for e:l_ 1 with Y~,~_ I 

m. 
The @ parameter allows for additional correlation at seasonal lags. (3.1) has 
a convenient property we shall use shortly: if the sampling error in each 
panel would follow (3.1) with m = 1 if the panel were observed every month, 
then for any number m (that is a divisor of 12) of rotating independent 
panels reporting successively, ei follows (3.1). 

To estimate (3.1) we require estimates of lag correlations for ei and ey__i. 
While estimates of lag covariances and correlations are not regularly pro- 
duced for the RTS, this was done as part of a special study using data from 
January 1973 through March 1975, a time when the survey had four rotating 
list panels. Estimates of such lag correlations can be averaged over time 
assuming correlation stationarity. Table 1 shows averaged correlations at lags 
4, 8, 12, 16, 20, and 24 for ei and ey_ 1 [the averaging was done after applying 
Fisher’s transformation 0.5 log((1 + r)/(l - r-11, and then the inverse trans- 
formation was applied to the results] for seven series from the RTS. Table 1 
shows that the sampling errors exhibit strong positive autocorrelation and 
evidence of seasonality from the increase in the correlations at lags 12 and 
24, justifying the (1 - @B12) term in (3.1). We estimated C$ and @ by 
minimizing the weighted sum of squared deviations of the correlations from 
(3.1) with m = 4, from those of table 1. (Lags 20 and 24 were ignored, and lag 
16 given a weight of 0.5, due to the small number of correlation estimates 
that were averaged together at these higher lags.) This procedure actually 
estimates &4, but assuming 4 > 0 estimates of C#J and c$~ can be computed 
directly for use with the three-panel samples. The results for c$’ and C$ are 
given in table 2. The correlations resulting from (3.1) with c4 and & are also 
shown in table 1, as an indication of the goodness-of-fit of the model. On the 
whole, the averaged correlations at the lags shown are reasonably well 
matched by those from the model, though the empirical correlations at lags 
20 and 24 appear to die out somewhat less rapidly than the model predicts. 

BH then derive a model for the sampling errors of the linear composite 
estimator [Wolter (1979)], which is given by 

y: = (I - p) r,l + p( y,“: i + Y; - Y,‘: i) (preliminary estimator), 

Y-1 = (1 -CX)r,“r +cuy:l, (final estimator). (3.2) 

In the RTS values of LY = 0.8, p = 0.75 have been used with the three-panel 
samples, and values of (Y = 0.82, 0 = 0.8 were used with the previous four- 
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Table 1 

Sampling error correlations for 

panel sample. Note that (3.2) also holds for the sampling errors, i.e., with Y 
replaced by e. BH then use (3.1) and (3.2) to derive the following expression 
for e,, the sampling error in the final composite estimates Y,: 
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Table 2 

Parameter estimates for (3.2) and related quantitiesaSb 

Coefficients of 
variation (%) 

^3 
4 6 ?i 62 x lo6 c F HT Composite 

Grocery stores 0.77 0.86 -0.19 1.34 0.994 2.2 1.3 
Eating places 0.69 0.72 -0.13 19.48 0.985 4.2 2.5 
Household appl. 

stores 0.77 0.77 -0.10 40.41 0.979 7.8 5.1 
Men’s and boys’ 

clothing stores 0.73 0.69 - 0.02 41.65 0.953 5.1 3.6 
Hardware stores 0.70 0.80 - 0.04 54.64 0.962 7.0 4.8 
Radio and TV 

stores 0.67 0.81 -0.10 87.60 0.979 9.8 6.1 
Drinking places 0.66 0.71 -0.13 93.01 0.986 8.8 5.1 

“Values for 4” and & were obtained as discussed in the text and in table 1. Then 4 and 4” 
were obtained assuming I#J > 0. The $ and &=’ values were obtained as described in the text. We 
calculated the coefficients of variation of the composite estimators using the fitted models (3.4); 
these differ some from published estimates (see text). 

bValues for p^ were obtained by averaging transformed values of corr(e:, e:_t) and then 
transforming back, and values of the relative variance of the HT estimates were obtained by 
averaging values of var(e:)/(Y,‘? and var(ey_I)/(Y’L1)2. For all but eating places, drinking 
places, and hardware stores, data for 1989 were used in the averaging of the lag 1 correlations 
and the relative variances. For these other three series, data for 1982 through 1986 were used. 
Also, for these series the logarithms of the relative variance estimates were averaged, added to 
one half of the sample variance of these, and this was then exponentiated to get the relative 
variances of the HT estimates. This produced only slightly different results than simply averaging 
the relative variances. 

corrbl,, v2 t-1> = p, at least approximately, which is justified in BH. 
Contrary to the above model, however, estimates of sampling variance, 

var<ei> and gr<e;l_,) for retail sales series are highly dependent on the level L - 
of the series. Since var<ei>/Y,’ and var(e:_,>/Y,‘Lr, the estimates of relative 
variance, are much more stable over time, BH turn to a multiplicative 
decomposition, Y = S, . ut, where U, = 1 + e,/S, is the multiplicative sam- 
pling error in Y,, and var(log(u,)) approximately equals var(e,/S,), the 
relative sampling variance of Y,, for small e,/S,. They then assume that a 
model of the form derived for e, actually holds for log(u,) in log(Y,) = 
logO,) + log(u,). For three-panel samples, the model resulting for log(u,) is 

(1-0.75B)(1-~3B3)(1-@B’2)log(u,)=(1-~B)CI, (3.4) 
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Fig. 1. Estimated autocorrelations for the sampling error; hardware stores. 
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where c, is white noise. We use our estimates of r#~, @, p and of the relative 
sampling variances of Y,’ and Y’L 1 to develop estimates of the variance and 
lag 1 autocovariance of the analog of the right-hand side of (3.3)& log&,), 
and hence obtain estimates of 77 and uc2. Estimates 6, Y,‘, Y:I_i, var(ei>, and 
vaI;<e:_,) are regularly produced in the RTS. We used estimates of these 
quantities for the twelve months of 1989 for all the series except eating 
places, drinking places, and hardware stores, for which we already had 
estimates for 1982 through 1986. We averaged the estimates of relative 
variance and p over time (the latter after applying Fisher’s transformation), 
producing the results shown in table 2 under the column headings ‘HT’ and 
‘p^‘, respectively. (Instead of the relative variance of the HT estimates, we 
show their square root, the coefficient of variation or CV.) Using these 
results, we solved for the estimates $ and 3,’ given in table 2. We then solved 
for var(log(u,)) in (3.4), which is an estimate of the relative variance of the 
final composite estimator. The square roots of these quantities, the CV’s of 
the final composite estimates, are also shown in table 2, and are in some 
cases somewhat lower than, but overall are reasonably close to, published 
estimates that are obtained more directly. 

We now mention some shortcomings of the sampling error model. First, 
the model (3.1) assumes zero correlation between sampling errors in the HT 
estimates from different panels, which means the only correlations expected 
to be nonzero are at lags that are multiples of the number of panels m. We 
had available estimates of HT sampling error correlations for all pairs of 
months from January 1973 through March 1975 from the four-panel survey, 
and so could examine whether correlations at lags not multiples of four 
appeared to be zero. The results were not uniformly encouraging. Fig. 1 
shows plots of the correlation estimates, chronologically by lag for lags 1 
through 12, for hardware stores, one of the discouraging examples. The solid 
line in each plot shows estimates of corr(e:, ej), and the dotted line in the 
plots at lags 4, 8, and 12 shows the correlations implied by the fitted models 
given in table 1. [We also examined estimates of corr(e:l_,, el_,). On a plot 
these were almost indistinguishable from the estimates of corr(ei, el), and so 
are not shown here.] The correlations in fig. 1 exhibit some substantial 
deviations from zero at several lags other than 4, 8, and 12. A possible 
explanation for this is the effect of monthly noncertainty cases discussed in 
appendix A.2. Also, many of the lag correlation estimates in fig. 1 exhibit 
periodic behavior with period 4, often with substantially larger periodic 
oscillations than the deviation of the average of the correlations from zero. 
This suggests either that correlation estimates for different panel pairs may 
not be estimating the same quantity, or that there is a very high correlation 
between correlation estimates for the same panel pairs, a hypothesis we are 
unable to assess. Other than this, we presently have no explanation for this 
phenomenon. 
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Another slight problem with the model is that the composite estimates are 
not used at the beginning of a new sample - Wolter (1979) mentions that the 
(approximate) minimum variance linear unbiased estimates are used for 
the first three months of a new sample. This introduces a transient effect into 
the autocorrelations that we shall ignore. 

In the following sections we shall use the model (3.4) with parameters 
given in table 2 for the composite estimate sampling errors in the three-panel 
samples. Also, as discussed in appendix A.2, because new three-panel sam- 
ples were drawn independently in September 1977, January 1982, and Jan- 
uary 1987, we assume independence of sampling errors from these different 
samples. While it would be preferable in some respects to use time series 
data from the four-panel survey, for which the sampling error correlation 
estimates were directly obtained, efforts we made to model the seven years of 
data from the four-panel survey (September 1970 through August 1977) 
yielded rather unstable results, suggesting to us that this was not a long 
enough stretch of data to support the type of models we were fitting. We 
would prefer instead to use direct estimates of sampling error lagged covari- 
antes in the three-panel survey in developing the sampling error models. 
Unfortunately, as noted earlier, such estimates are not currently available. 
We hope we can eventually obtain lagged covariance estimates for the 
three-panel survey. If so, we can better assess the suitability of the model 
(3.4), and also try to modify the model (3.4) as seems necessary. 

4. Effects of sampling errors on autocorrelation properties of observed series 

Consider the additive decomposition Y, = S, + e,, where S, follows the 
airline model (1 - BXl - B12)S, = (1 - B,BXl - 812B’2)br, and the sampling 
errors follow the model (3.4) but with log&,) replaced by e,. (We consider 
the additive decomposition here merely for simplicity of notation, we could 
similarly use logarithms of a multiplicative decomposition.) In this section we 
investigate analytically the possible effect of the sampling errors on how the 
autocorrelation properties of the observed series Y, differ from those of S,. 
We use this exercise as a guide to what might be expected from the empirical 
results later. Since Y, requires the same differencing operator, VV12 = 
(1 -BXl -B12), as S,, we let W, = VV12Yt = u, + (,, where u, = VV12S, = 
(1 - B,BXl - r3i2B12)bt, and 5, = VV12e, follows the model 

(1 - 0.75B)( 1 - 0.7B3)( 1 - 0.75P)5, 

= (1 +o.lB)(l -B)(l -P)c,. (4.1) 

The values of &3, &, and Gj in table 2 do not vary greatly over series; in (4.1) 
we have picked roughly the average parameter values from table 2. The 
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Table 3a 

Autocorrelations from (4.1) with c$~ = 0.7, @ = 0.75, T = - 0.1. 

Lag 1 2 3 4 5 6 7 8 9 10 11 12 
p&k) -0.24 -0.26 0.60 -0.21 -0.21 0.35 -0.15 -0.15 0.18 -0.10 -0.09 .03 

Lag 13 14 15 16 17 18 19 20 21 22 23 24 
p&k) -0.06 -0.05 0.01 -0.02 -0.02 -0.01 0.00 0.00 -0.05 0.02 0.02 - 0.10 

Lag 25 26 27 28 29 30 31 32 33 34 35 36 
@d 0.03 0.03 -0.07 0.03 0.03 -0.07 0.04 0.04 -0.08 0.04 0.04 -0.10 

model (4.1) reflects overdifferencing [the (1 -B) and (1 - B12) moving aver- 
age operators] since e, following (3.4) does not require differencing. 

Let y,,,(k) and p,(k) denote the autocovariance and autocorrelation of W, 
at lag k, with analogous notation for the other series involved. Then one can 
easily see that 

p,(k) = h,(k) + Cl- A)P#) y A = r,w(rm + Y&q- 

Thus,‘the autocorrelation function of the differenced observed series will be 
a weighted average of those of the differenced signal series and the differ- 
enced sampling error. The averaging parameter, A, depends on the variance 
in the signal series relative to that in the observed series; it can also be 
expressed as a function of the signal-to-noise ratio, ui/uC2, and the parame- 
ters 13, and 8,,. Table 3a gives the autocorrelations of 5, arising from (4.1). 
This shows positive correlations damping out at lags 3, 6, and 9, a correlation 
at lag 12 of near zero, and small negative correlations at lags 1, 2, 4, 5, 7, 8, 
10, 11, 13, and 14 that tend to decrease in magnitude with increasing lag. 
Autocorrelations beyond lag 14 are mostly close to zero; those at lags 24 and 
36 are the largest of these in magnitude. The autocorrelations of W, are the 
result of averaging these together with those of u,, which will be negative at 
lags 1 and 12 (for positive values of 0r and @,,I, the product of p,(l) and 
~~(12) (and so smaller and positive) at lags 11 and 13, and zero at all other 
lags. 

Autocorrelations of W, were computed for the above models for 8, = 
(0,0.3,0.9) and 0r2 = (0.7,l.O). Th is was done for a case of low sampling error 
(a moderately high signal-to-noise ratio of ui/uC2 = 10) and for a case of high 
sampling error (a low signal-to-noise ratio of ui/u,” = 3). The results are 
shown as solid lines in figs. 2a and 2b, which also show bar graphs of the 
autocorrelations of u,. The presence of sampling error shrinks the spikes in 
~~(12) towards zero and decreases the values of p,(ll) and ~~(13). The 
effects on p,(l) depend on the value of 8,: for 0r = 0.9 the strong negative 
p,(l) is pulled towards zero; for 19, = 0 we have p,(l) = 0 but a fraction 
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Table 3b 

Airline model parameters (et, et,) producing the best approximation to autocorrelations of the 
differenced data, W,, in the presence of (differenced) sampling error following (4.1). 

01 

Low sampling error High sampling error 

612 012 
0.7 1.0 0.7 1.0 

0 (0.02,0.52) (0.01,0.63) (0.05,0.35) (0.04,0.44) 
0.3 (0.29,0.53) (0.29,0.64) (0.28,0.36) (0.28,0.45) 
0.9 (0.76,0.59) (0.78,0.72) (0.62,0.45) (0.66,0..55) 

(1 -A) of the negative correlation in 5, at lag 1 filters through to W,; and 
8, = 0.3 is approximately a stationary point, with p,(l) very close to p,(l). At 
other lags p,,,(k) = (1 - h)p&k>. Still, even in the high sampling error case, 
values of p,(k) for k # l,ll, 12,13 are less than 0.2 in magnitude, and 
someone identifying a time series model from p,(k) could easily pick an 
airline model for Y,. The most likely alternative choice would be to augment 
this model with additional low-order MA or AR lags, e.g., an (0, 1,3) X 

(0, 1, l),, model instead of the airline model. 
To get an idea of what might happen if one were to fit an airline model 

directly to Y in this situation, we picked values of 8, and 8,, to approximate 
p,(k) for k = 1, 11,12,13, in the sense of minimizing the sum of squares of 
the deviations of the airline model correlations from the p,(k). The results 
are given in table 3b. As might be expected from figs. 2a and 2b, the presence 
of sampling error as modeled here biases up the estimate of 8, when the true 
8, equals zero, biases it down when the true value is large, and has virtually 
no effect for intermediate values (i.e., 8, near 0.3). The impact of the 
sampling error on the estimate of 0i is much greater when the true 0, is 
large. The effects of sampling error on estimates of fIi2 are a dramatic 
shrinking of the value towards zero in virtually all cases considered. Of 
course, the innovation variance (not shown in the table) is smaller when the 
model allows for sampling error, and so attributes some of the variability to 
this component. In the next section we shall see to what extent these effects 
show up empirically in fitting models with and without sampling error 
components to observed retail sales series. 

5. Estimating time series models for retail sales 

We now estimate models with and without sampling error components for 
our seven retail sales time series. Plots of the (unbenchmarked) final compos- 
ite estimates Y, for these series are given in fig. 3. (These are nominal series; 
we shall later also analyze constant dollar series.) Our data begins with the 
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start of the three-panel survey, in September 1977, and ends in October 1989, 
yielding 146 observations. There were two redrawings of the RTS sample 
during our observation period: in January 1982 and January 1987. 

As fig. 3 makes clear, all seven of our series show strong seasonal&y, 
nonstationarity in level, and variability increasing with increasing level, sug- 
gesting a need for nonseasonal and/or seasonal differencing, and the trans- 
formation log(Y,). Taking logarithms of the multiplicative decomposition 
Y, = S, . (1 + e,/S,) = S, * ut to get log(Y,) = log(S,) + log(u,) is also conve- 
nient in terms of the properties of the sampling error, as noted in section 3. 
BH note that because the Y, are ‘design-unbiased’ estimates (unbiased over 
repeated realizations of the sample), the time series log(S,) and log(u,) are 
approximately uncorrelated. All the time series here are known to be 
affected by trading-day variation, and two of them (grocery stores and men’s 
and boys’ clothing stores) by Easter holiday variation. We handle these 
effects with regression variables as discussed in Bell and Hillmer (1983), with 
a nine-day Easter effect for grocery stores and a seven-day Easter effect for 
men’s and boys’ clothing stores. We also include indicator variables in the 
models for a few outliers found in the series, using essentially the scheme of 
Bell (1983); the basic outlier detection methodology is discussed in more 
detail in Chang, Tiao, and Chen (1988). We did not find many outliers, and 
those found were not inordinately large in magnitude. For the sake of 
brevity, we shall omit estimates of regression parameters in what follows. In 
general, the estimates of the regression parameters in our models are little 
affected by the presence or absence of a sampling error component in the 
model. 

As discussed earlier, we use the airline model for the signal series with 
regression effects removed, i.e., 

VV,,[log(S,) -regression terms] = (1 - 19,B)(l- 0,,B”)b,, 

or we ignore the sampling error and apply this model directly to log(Y,). This 
choice of model can be justified empirically as follows. Sample autocorrela- 
tions of log(Y,), V log(Y,), Viz log(Y,), and VV,, log(Y,) suggest taking VV,, 
log(Y,) for all seven series. Examining sample autocorrelations of the residu- 
als from a regression of VV,, log(Y,) on differenced trading-day and (when 
required) Easter holiday variables then suggests the airline model for most of 
our series, and for none of the series does the airline model appear to be an 
unreasonable choice. Also, BH suggest selecting a model for log(Y,) via such 
usual techniques ignoring sampling error and using this as a starting point in 
modeling log(S,), modifying the model if diagnostic checking suggests inade- 
quacies in the model. We note later that diagnostic checking does not suggest 
inadequacies with the model in most cases. Notice that if 8, or 8,, is 
estimated to be approximately one, indicating overdifferencing, we can cancel 
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the V or V,, and add a trend constant or fixed seasonal regression terms to 
the model. 

When the sampling error, log(u,), is included in the model for log(Y,), it is 
assumed to follow the model (3.4) within samples, with parameter values as 
given in table 2. The breaks in covariance structure of log&,) when a new 
sample is introduced are handled in estimation by the Kalman filter as 
discussed in Bell and Hillmer (1990b). We carried out the estimation using 
software recently developed by the time series staff of the Statistical Re- 
search Division, U.S. Bureau of the Census, for Gaussian maximum likeli- 
hood estimation of ARIMA component time series models with regression 
terms. The sampling error models are held fixed in the time series estimation; 
i.e., the likelihood is maximized over only 19i, 0i2, at, and the regression 
parameters. Table 4a gives estimation results for current dollar data with and 
without the sampling error component included in the model. 

Focusing first on estimates of IY~ (a one-step-ahead prediction coefficient 
of variation) we see, as must occur, reductions in &b when some of the 
variation in the series is attributed to sampling error. There are substantial 
reductions in IZ+~ for eating places, hardware stores, and drinking places, so 
for these series economic interpretations of &b would be importantly affected 
by the presence of sampling error. The reductions in $b are smaller for the 
other series. The amount of reduction in &,, depends not so much on the 
absolute amount of sampling error present in the series, which is measured 
by the composite estimate CV’s in table 2, but on the magnitude of the 
sampling error relative to the signal, as inversely measured by the signal-to- 
noise ratios &:/6cz given in table 4a. The distinction between absolute and 
relative magnitudes of the sampling error is important for our series. For 
example, eating places has the second lowest composite estimate CV in table 
2, but also has the second lowest signal-to-noise ratio in table 4a. This occurs 
because several other series with higher composite estimate CV’s also appear 
to have signals that are inherently much less predictable, as reflected in their 
higher estimates of Gb. Thus, the impact of sampling error on &b depends not 
just on the magnitude of the sampling error, but on its magnitude in relation 
to the variability in the signal series. 

Turning to the estimates of the seasonal moving average parameter ei2, we 
see that including sampling error in the model brings large increases in 8,, 
for eating places, hardware stores, and drinking places. Again, for these 
series the economic interpretation that could be placed on B,, would be 
sensitive to the treatment of sampling error. There is little change in e^,, for 
the other series. For the most part, the behavior of e^,, for the series here is 
consistent with the predictions of the previous section (see table 3b). The 
exceptions are radio and TV stores, and grocey stores. For radio and TV 
stores we would expect to see more change in 8,, when the sampling error 
model is included, given its signal-to-noise ratio 6,‘/&*, which is comparable 
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Table 4a 

Estimated parameter values for models with and without sampling error (current dollar data). 

Model ignoring sampling error Model with sampling error 
1 . 
01 e12 100~$, Q,* i, i,, loo& QE &;/&Cz 

Grocery stores 0.48 0.59 1.04 35.1 0.46 0.70 0.98 30.4 71.7 
Eating places 0.25 0.73 1.52 9.5 0.19 0.94 1.29 10.4 8.5 
Household appl. 

stores 0.45 0.52 4.10 11.1 0.49 0.49 3.98 10.5 39.2 
Men’s and boys’ 

clothing stores 0.40 0.21 3.32 21.0 0.39 0.21 3.11 23.9 23.2 
Hardware stores 0.18 0.68 3.56 16.4 0.19 0.99 2.91 23.8 15.5 
Radio and TV 

stores 0.01 0.65 4.10 22.9 0.02 0.70 3.81 23.6 16.6 
Drinking places 0.29 0.56 2.59 15.8 0.23 0.88 2.04 10.4 4.5 

to that for hardware stores. For grocery store sales the increase in e^,, is 
larger than expected, given the very small amount of sampling error evident 
from tables 2 andn3. We have no explanation for these exceptions. In general, 
the results for 0r2 here would seem to have important implications for 
seasonal adjustment, since the sampling error is capable of making what is 
essentially fixed seasonality (e^,, near one) appear stochastic. 

The estimates of t?r in table 4a change very little when sampling error is 
included in the model, suggesting that economic interpretations of this 
parameter should be relatively robust. This is not surprising since none of the 
f?r’s approach the value of 0.9 for which important effects of sampling error 
were noted in section 4. (We hope eventually to investigate the possibility 
that effects might be seen with improved sampling error models developed 
from micro-data for the three-panel survey.) In terms of the simple theory 
outlined in the introduction and appendix A.1 the f?,‘s do not make much 
sense; even when sampling error is included in the model taking 1 - 6, as an 
estimated depreciation rate we find implied depreciation rates of at least 50 
percent per month for all the store categories considered. Moreover, viewed 
from this perspective the ordering of the 1 - 6, values is not appealing. For 
example, the point estimates suggest that items sold at men’s and boys’ 
clothing stores, hardware stores, and radio and TV stores depreciate more 
rapidly than grocery store goods. 

Finally, table 4a includes Ljung-Box (1978) statistics (Q12> using twelve 
lags, as a rough check of aggregate model adequacy. These cannot sort out 
whether the signal and sampling error models are separately adequate, only 
whether the’resulting model for log(Y,) may be inadequate for explaining the 
covariance structure of the observed series. The Qrz statistics were computed 
using standardized residuals produced by the Kalman filter using the maxi- 
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Table 4b 

Estimated parameter values for models with and without sampling error (constant dollar data). 

Model igoring sampling error Model with sampling error 
A 
81 42 lOO&* Q,* i, i,, lOt%~ Q12 C+;/&C2 

Grocery stores 
Eating places 
Household appl. 

stores 
Men’s and boys’ 

clothing stores 
Hardware stores 
Radio and TV 

stores 
Drinking places 

0.40 0.76 1.12 35.0 0.35 0.90 1.02 30.3 77.8 
0.24 0.71 1.52 5.6 0.19 0.98 1.24 6.6 7.9 

0.40 0.49 4.15 11.6 0.44 0.45 4.01 10.8 39.9 

0.34 0.24 3.37 18.9 0.32 0.25 3.17 21.7 24.2 
0.20 0.73 3.57 9.0 0.19 0.98 2.91 11.8 15.5 

0.00 0.64 4.14 19.9 0.02 0.68 3.83 20.6 16.8 
0.28 0.54 2.58 13.3 0.25 0.86 2.06 10.3 4.6 

mum likelihood estimates of the model parameters. Given the nature of our 
model, it is not clear that the usual asymptotic theory would apply to these 
statistics. Nevertheless, we provide them as a rough indication of model fit. If 
one follows the usual practice of comparing these against chi-squared critical 
values for 10 degrees of freedom (which are 18.3 for five percent and 23.2 for 
one percent) there would be mild concerns about some of the model fits, 
which could probably be alleviated by including additional nonseasonal 
moving average or autoregressive terms in the model at low lags. The largest 

Q12 values are exhibited by grocery stores, though this is of the least concern 
for our purposes here since grocery stores has the least sampling error of any 
of the series. Including sampling error in the model lowers Qr2 in some 
cases, raises it in others. 

Because consumption theory applies more naturally to real quantities than 
to current dollar values, we also fit our models to constant dollar series. The 
price deflators we used were components of the consumer price index (CPI) 
that we selected in order to obtain the best match between sales series and 
price series; for all of the sales categories except hardware stores (for which 
we used a price series for housing maintenance and repair commodities) it 
was not difficult to find a price series that appeared to provide a good match. 
These price indices are available in not-seasonally-adjusted form. (Details of 
our selections are available on request.) If pt denotes the price index, then 
notice that we have 

w UP,) = hz(S,/P,) + h$%) 9 (5.1) 

so that by deflating the composite estimates Y, we can model the deflated 
signal series, St/p,, subject to the same sampling error u,. Actually, the CPI 
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components are themselves estimates from a sample survey, and thus our 
price deflators are also subject to sampling error. Since we are ignoring this, 
we have really omitted another (independent, additive, logarithmic) sampling 
error component in (5.1). We have not investigated whether information is 
available on the autocovariance structure of these sampling errors. 

In any case, table 4b gives estimation results for the deflated data that 
convey the same message as those of table 4a, so that it matters little whether 
we use current or constant dollar data. Indeed, corresponding entries of 
tables 4a and 4b (other than some Qi2 values) are quite close for every store 
category except grocery stores, where the estimate of f3,, is a bit higher in the 
constant dollar data both when the sampling error model is suppressed and 
when it is included. 

6. Summary and conclusions 

In this paper we have examined the sensitivity of modeling results for time 
series from the Census Bureau’s Monthly Retail Trade Survey CRTS) to the 
presence of sampling error. Our interest in these series stems from their 
relevance to the consumption literature, which in recent years has empha- 
sized the economic interpretation of parameters in time series models for 
consumption spending. Using available information on sampling error auto- 
correlations and (relative) variances, we constructed time series models for 
sampling errors in the RTS. Then, using the ‘airline model’ for the true, 
unobserved series as a baseline specification, we estimated models for seven 
time series from the RTS with and without models for the sampling error 
components. While there are some identifiable shortcomings in our sampling 
error models, the results of this effort, and those of the analytical exercise of 
section 4, suggest that certain modeling results can be sensitive to the 
presence of even moderate amounts of the type of sampling error present in 
the RTS. Explicit treatment of sampling error in the model can result in 
considerably lower estimates of the innovation variance of the true (signal) 
series and considerably higher estimates of the seasonal moving average 
parameter, relative to results obtained when sampling error is ignored. In 
regard to the latter, ignoring (seasonally correlated) sampling error can make 
seasonal&y appear much more variable than it appears when the sampling 
error is accommodated in the model. Estimates of the nonseasonal moving 
average parameter were not much affected by including sampling error in the 
model for the series considered here, though the parameter estimates turned 
out to be in a range where little effect would be expected. Given that 
estimates of the nonseasonal moving average parameter typically lie in the 
range 0 to 0.5, economic interpretations of this parameter would appear to 
be robust to the presence of sampling error from the monthly RTS. 
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The message from this analysis is that sampling error should be taken 
seriously in attempts to derive economic implications from modeling of time 
series data from repeated surveys. The presence of a ‘small amount’ of 
sampling error should not affect the analysis much; unfortunately, what 
constitutes a ‘small amount’ depends on the magnitude of the sampling error 
relative to the variability of the true (signal) series, i.e., on the signal-to-noise 
ratio. Thus, effort beyond looking up a sampling coefficient of variation in a 
publication is required to determine if sampling error may matter in a 
particular situation. Further work is needed to obtain better information on 
the autocovariance structure of sampling errors, and to bring them into an 
integrated inferential framework for time series analysis. 

Appendix A.l: Deriving the airline model from an economic model for 
durable goods expenditures 

This appendix gives one set of assumptions consistent with the level of 
spending on a durable good following an airline model. 

The representative consumer chooses a path for expenditure on the 
durable good by solving the following maximization problem: 

max- +E, 5 Pj[ (K*+, 
j=O 

(Al.l) 

where p is the subjective discount factor, K,+j is the accumulated stock of 
the durable good at time t + j, and Tt+j is an exogenous stochastic process 
describing the evolution of tastes. We discuss the role of I, below. Maximiza- 
tion takes place subject to the following constraints: 

K,=(l-6)K,_,+S,, (A1.2) 

w, = (1+ r)W,_, + r, -s,, (A1.3) 

(1 -B)(l -B’*)T,= v,, (A1.4) 

1, = 4w,, (A1.5) 

where 6 is the depreciation rate; S, measures spending on the durable good 
in time period t; r is the real interest rate; W, is the level of nonhuman 
wealth held at the end of period t in some asset other than the durable good; 
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and Y, is labor income. There are two sources of uncertainty: shocks to the 
taste-shift process (variance a,*> and shocks to labor income (variance 0,‘). 
We assume that the innovations in tastes are uncorrelated at all leads and 
lags with the innovations in labor income. 

The transversality conditions are given by 

lim P’ Et( Ay+jW,+j) = 0, 
i+m 

(A1.6) 

lim /3j Et( AT+jK,+j) = 0, 
j-cc 

(Al .7) 

where Ay+j and hf+j are the Lagrange multipliers on Wr+j and K,+j, 
respectively. We assume that the real interest rate is fixed and equal to the 
rate of time preference. 

Many previous authors who have studied optimization problems similar to 
(Al.l)-(A1.7) have not included the variable 1, in the utility function. 
Implicitly, such previous authors have set 4 equal to zero. Hansen and 
Sargent (1991) interpret 1, as measuring household inputs into production; in 
the specific case considered here ‘production’ takes place via a storage 
technology, and 1, can be interpreted as an adjustment cost. Hansen and 
Sargent (1991) note that with 4 equal to zero, the optimal plan for the 
consumer would involve setting consumption at the bliss level period-by- 
period, and letting debt accumulate in an unrestricted fashion. Hansen and 
Sargent show that the transversality conditions would be satisfied under this 
solution despite the rapid accumulation of debt because the Lagrange multi- 
pliers both equal zero when consumption is at the bliss level. They also show, 
however, that when 4 is nonzero, the optimal solution involves neither the 
setting of consumption equal to the bliss level nor the pathological accumula- 
tion of debt. Moreover, with 4 set arbitrarily close to zero, the optimal 
solution approximates arbitrarily well the (technically incorrect) solution that 
most previous authors have proposed to problems similar to (Al.NA1.7). 

Tedious algebra yields that, for 4 chosen very small, spending on the 
durable good S, follows a univariate process arbitrarily close to 

(A1.8) 

Model (A1.8) is the analogue in levels to the model we estimate in logs. We 
have verified model (Al.81 using the computer programs described in Hansen 
and Sargent (1991). 
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The seasonal MA parameter 8,, is a function of the real interest rate and 
the variance ratio u,‘/gY2. As this ratio goes to zero, 8,, goes to one, and the 
model for S, simplifies to an IMA(1, 1) with deterministic seasonal means. 

Appendix A.2: The retail trade survey CRTS) 

The Census Bureau’s Retail Trade Survey CRTS) produces monthly esti- 
mates of sales for detailed kinds of retail businesses (defined by SIC codes) at 
the U.S. and regional level, and for less detailed kinds of retail businesses for 
some states and metropolitan areas. In this paper we shall deal only with 
data at the U.S. level. We note that the estimates for states and metropolitan 
areas typically are subject to much higher levels of sampling error than are 
the corresponding estimates at the U.S. level, and hence empirical work 
based on subnational sales estimates would be even more prone to the effects 
of sampling error investigated in this paper. 

In the RTS, estimates are obtained from reports of sales from a monthly 
sample survey of businesses, and from benchmark adjustments to reports of 
annual sales from an annual sample survey and from the quinquennial 
economic censuses. The published estimates differ from the exact, actual 
values of retail sales because of sampling error and various nonsampling 
errors. In this appendix we briefly review some basic features of the survey 
design and estimation, some of which are used in section 3 in developing time 
series models for the sampling errors. Several other aspects discussed have to 
do with nonsampling errors, the magnitudes of which are largely unknown 
and which, therefore, cannot be accounted for in the modeling. Still, it is 
useful to be aware of these limitations in the data. The discussion here is 
necessarily brief; for more detailed discussion of the RTS see Wolter et al. 
(19761, Wolter (1979), and Garrett, Detlefsen, and Veum (1987). Woodruff 
(1963) is another useful reference, though important changes in the RTS 
have been made since the time of his writing. Useful summaries of the 
operation of the RTS, and notices of major changes, are provided in 
appendices to the data publications, the Census Bureau’s Monthly Retail 
Trade Reports. Waite (1974) investigated nonsampling errors in the RTS. 

Since 1971 the RTS has primarily relied on a list sample drawn from the 
Standard Statistical Establishment List (SSEL), with information relating to 
firm births and deaths obtained from the Social Security Administration and 
the Internal Revenue Service. A separate geographic area sample is used to 
cover businesses not within the list frame, mainly new businesses not yet 
entered into the SSEL and businesses without payroll (e.g., some family 
businesses). In recent Retail Trade Reports the area sample is reported as 
contributing only about six percent to overall retail sales, though this amount 
varies by kind of business. Because of its generally small contribution, we 
shall not consider the area sample in detail here. 
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The RTS consists of a panel of larger businesses selected into the sample 
with certainty, rotating panels of list sample businesses selected by stratified 
simple random sampling without replacement, and the rotating panel area 
sample cases selected in a multistage procedure. New samples are indepen- 
dently redrawn and introduced about every five years; since the move to the 
list sample, this has occurred in September 1977, January 1982, and January 
1987. When a new sample is instituted, certainty status is assigned to those 
businesses whose sales in the most recent economic census exceeded cutoff 
points specific by kind of business. Certainty cases report monthly on sales 
for the current reporting month. Presently three list sample rotating panels 
report current and previous month sales every three months (three-panel 
design); prior to September 1977 an analogous four-panel design was used. 
This basic design has important implications for the time series properties of 
the sampling errors. Since the rotating panels are drawn independently (or 
approximately so, to the extent that the sampling fraction of the noncertainty 
cases is small), the sampling errors in estimates arising from different panels 
should be independent. Also, since the redrawing of the samples about every 
five years is done independently, sampling errors from these different sam- 
ples will be independent. 

Each month, unbiased Horvitz-Thompson (HT) estimates [Cochran (1977, 
pp. 259-261)] of current and previous month sales are constructed. These 
estimates are weighted totals of the sample observations, where the weights 
are the inverses of the probabilities of selection - one for the certainty cases. 
The HT estimates are then used in producing ‘composite’ estimates, as 
discussed in section 3. Sampling variances are estimated using the random 
group method [Wolter (1985>] for the list sample (with 16 random groups), 
and the collapsed stratum method for the area sample. In principle, by 
linking random group totals for pairs of months, covariances of the corre- 
sponding sampling errors can be estimated by the random group method in 
the same way that sampling variances are estimated. This is how the lag 
covariances were estimated in the special study mentioned in section 3 
that produced the sampling error autocorrelations used in this paper. Un- 
fortunately, random group totals are not saved when the monthly survey 
estimation processing is done, so that current estimates of sampling error 
autocovariances are not readily available. 

Large observation procedures [see Woodruff (1963) and Wolter et al. 
(197611 are used to reduce the variances of the HT estimates while still 
retaining unbiasedness. Basically, reported sales of noncertainty sample units 
are compared against cutoff values and, if the cutoff values are exceeded, the 
units are designated as monthly noncertainty cases, either temporary (cutoff 
exceeded in one month) or permanent (cutoffs exceeded for a sequence of six 
months). These units are then canvassed and tabulated one additional month 
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(temporary case) or each month thereafter (permanent case) but with sample 
weights reduced to maintain unbiasedness. The important consequence of 
these procedures is that some of the businesses selected in one rotating panel 
will, over time, start contributing to the estimates of the other rotating 
panels, thus inducing correlation in the sampling errors of the estimates from 
different panels. When a new sample is implemented there are no monthly 
noncertainty cases. Ruth Detlefsen of the Business Division at Census 
reports that the monthly noncertainty cases typically build up fairly quickly 
and stabilize at some level that is significant for many kinds of business. 

Calendarization and imputation procedures are needed to address two 
important response problems. The former deals with the fact that some 
businesses do not keep their books on a calendar month basis. In such cases 
the preferred procedure is for the business to provide an estimate of calendar 
month sales. However, some such businesses file RTS reports for periods 
other than calendar months (e.g., four- or five-week periods); the Census 
Bureau then applies calendarization procedures to convert these data to a 
calendar month basis. Such procedures obviously are necessary to produce 
calendar month sales figures; however, either possibility leads to nonsampling 
error of an essentially unknown magnitude in the published estimates. 
Imputation procedures are needed to deal with missing data arising from 
nonresponse, late response, and edit failures (detected bad data). Imputa- 
tions are based on past values for the same business and other businesses of 
the same kind in the same panel. While this procedure will not induce 
correlation across panels, it can inflate correlation within a panel. The extent 
of this effect is difficult to know, though it certainly depends on the level of 
nonresponse in the RTS, which varies over time and by kind of business. 
Garrett, Detlefsen, and Veum (1987) report that as of August 1987 roughly 
25 percent of total retail sales by value was being imputed, though since 1989 
the imputation rate has dropped to about 17 percent. Imputation rates are 
higher at the start of a new sample due to difficulties in getting some new 
sample units to respond initially, and difficulties in determining that some 
units selected for the new sample are no longer in business. In any case, 
there has been a significant deterioration from previous years; Wolter et al. 
(1976) report a nonresponse rate of only nine percent. 

As mentioned earlier, monthly survey estimates are benchmarked to an- 
nual totals from the annual RTS and the quinquennial economic censuses. 
The data from these sources are believed to be more reliable than those from 
the monthly RTS because the response rates are higher (possibly due to 
mandatory reporting requirements), and because businesses generally have 
book figures (rather than just estimates) available on an annual basis (for 
calendar or fiscal years). Benchmarking can remove significant amounts of 
nonsampling error, at least in regard to annual totals, but month-to-month 
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movements are still determined by the monthly survey.’ As benchmarking 
involves a filtering of the time series of estimates, it will affect their autocor- 
relation properties. To avoid such problems in this paper, we use data that 
are not benchmarked. For this reason, the data used here do not agree with 
published estimates. 

Another adjustment of importance to the monthly estimates is made to 
avoid sudden shifts in level whenever a new sample is introduced. Data in the 
old sample are multiplied by the geometric mean of the ratios of new sample 
to old sample estimates obtained for two months for which the old and new 
samples overlap. Since the models we shall use involve taking logarithms and 
(regular and seasonal) differencing, the effect of this adjustment will be 
limited to the first month of the new sample and the same month a year later. 
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