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Abstract

Seasonal adjustment of economic time series is subject to the following sources of error:
nonsampling survey errors, sampling error, model uncertainty, parameter uncertainty, seasonal
plus nonseasonal decomposition uncertainty, and inherent signal extraction error. While it is
difficult to allow for nonsampling errors and model uncertainty, we develop Bayesian methods to
allow for the contributions of the other four error sources in assessing uncertainty in seasonal
adjustment. There are four elements to our approach. (1) We develop ARIMA time series models
for the signal (true, unobserved series) and sampling error components of a time series. (2) We
use the model-based framework of Hillmer and Tiao, and Burman, for decomposition of the
signal model into seasonal and nonseasonal component models. (3) We treat the model in a
Bayesian framework that facilitates the combining of information about the sampling error
model available from estimated sampling error variances and covariances with the information
contained in the observed time series data. (4) We use Monte Carlo integration to obtain
posterior means and variances of the seasonal and nonseasonal components. Uncertainty about
the seasonal plus nonseasonal decomposition is reflected by using a flat prior for a key parameter
in the approach of Hillmer and Tiao, and Burman. Different values of this parameter lead to
different seasonal and nonseasonal component models that are still consistent with the signal
model, and hence with the model for the observed time series, so the data contain no information
about this parameter. Comparing the posterior means and variances with those obtained
conditional on the model parameters, or on the decomposition parameter, or both, provides an
assessment of the contributions of parameter uncertainty and decomposition uncertainty to
seasonal adjustment uncertainty.

We apply our methods to a Census Bureau time series of five or more unit housing starts in
the South region of the U.S. For this series we find that posterior means of the seasonal and
nonseasonal components are insensitive to parameter uncertainty, but are very sensitive to
decomposition uncertainty. We also find that parameter uncertainty has a generally small effect
on posterior variances, though the effects vary erratically over time. We find that decomposition
uncertainty has a large effect on posterior variances. The general conclusion is that in seasonal
adjustment, careful thought should be devoted to the decomposition assumptions, the
assumptions made to yield models for the seasonal and nonseasonal components consistent with
the signal model. The decomposition assumptions have a profound effect on the results, and the
data carry no information to discriminate between alternative model decompositions that yield
the same model for the observed data.
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1. Introduction

Let Vi be a time series of estimates from a repeated sample survey taken more
frequently than annually, e.g. monthly or quarterly. We let ¥, represent both the survey
estimators (random variables) and the realized estimates (observed values). We consider

the decomposition
Yy =5y + Ny + e t=1,..,n (1.1)

where St and Nt are the seasonal and nonseasonal components, and e, represents sampling
error. We write Yt = St + Nt for the series that would be observed if a census rather than
a sample survey were taken at each time t. Thus, ¥y = Yt if the estimates contain no
sampling error. Notice that the seasonal + nonseasonal decomposition applies to Yt rather
than to y;- With some exceptions (e.g. Wolter and Monsour 1981, Hausman and Watson
1985, Carlin and Dempster 1989, Pfeffermann 1990), the seasonal adjustment literature has
focused on seasonal + nonseasonal decomposition of the observed series Yy without
recognizing the presence of the sampling error € The resulting estimators implicitly
assign part of e, to St and part to Nt'

In the context of (1.1) seasonal adjustment can be viewed either as (i) estimation of

N, or (ii) estimation and removal of S;, i.e. estimation of Vi =S = N; + €. The first of

t
these concepts is appropriate if one wishes to extract N ¢ from both the seasonal S ; and
sampling error e;. This is a natural successor to use of time series signal extraction
methods to estimate Y, from data on ¥y something suggested by Scott and Smith (1974),
and Scott, Smith, and Jones (1977), and investigated more recently by Binder and Dick
(1989), Bell and Hillmer (1990, 1992), Pfeffermann (1991), and others. Since statistical
agencies conducting repeated surveys have not yet adopted such techniques, one may

instead be led to the second concept as more consistent with current practice. The

reluctance to use time series signal extraction techniques in repeated survey estimation



may derive from the need to balance the potential benefits of doing so against both the
additional effort involved and the risks associated with possible failure of the time series
models used. These concerns seem less important in seasonal adjustment than in repeated
survey estimation, however, since seasonal adjustment inherently requires some sort of
time series signal extraction. We consider both of the seasonal adjustment concepts here
by examining estimation of both St and Nt'

In many cases the decomposition (1.1) is more appropriate for the time series of the
logarithms of the original survey estimates. This is discussed for signal extraction
estimation of Y, in Bell and Hillmer (1990). To keep notation simple, we let y; denote
either the original estimates or their logarithms. In the latter case a decomposition for the
original series is obtained simply by exponentiating (1.1). The resulting point estimates of
St’ and standard errors for estimates of St and N {» may be conveniently interpreted in
percentage terms.

Typically, N, in (1.1) is further decomposed as Ny =T, +1, (trend + irregular). In
this paper we use the three component decomposition, Y S St + Tt + It’ only as a tool in
studying the two component decomposition, Yt = St + N ¢ Our methods readily extend to
explicit study of the three component decomposition, however.

Our objective in this paper is to develop a model-based Bayesian methodology to
assess uncertainty about S, and N, in (1.1). Bell (1989) identified the following sources of
uncertainty in seasonal adjustment: (1) sampling error; (2) nonsampling error; (3) model
uncertainty; (4) parameter uncertainty; (5) decomposition uncertainty; and (6) inherent
uncertainty (signal extraction error). The effects of (2) and (3) are extremely difficult to
assess, and we shall not attempt to do so here. We deal with the other sources of error by
developing Gaussian time series models for the sampling error e, and "true" (apart from
nonsampling error) series Yt’ and then using Bayesian methods with noninformative priors
on model parameters to develop posterior means and variances of S t and Nt' Integral to

our methodology is the model-based approach to seasonal adjustment of Burman (1980)



and Hillmer and Tiao (1982). This approach starts with a seasonal ARIMA
(autoregressive-integrated-moving average) model for Y, and then makes assumptions
about seasonality and nonseasonality that uniquely determine models for St and Nt that
are consistent with the model for Yt = St + Nt‘ Putting a noninformative prior on a key
parameter involved in these assumptions permits explicit treatment of decomposition
uncertainty.

The Bayesian approach we adopt has several advantages for this application. First,
it is particularly convenient for handling the nonlinear sources of seasonal adjustment
error, including parameter uncertainty and decomposition uncertainty. Second, the
Bayesian approach provides a natural framework for recognizing uncertainty about the
model parameters for both the sampling error (e;) and signal (Y,) processes. This
important problem has not yet been dealt with in the literature on using time series signal
extraction methods for repeated survey estimation. This literature typically assumes that
the model for e and often the model for Yt’ are known with certainty. Third, the
Bayesian approach is convenient for assessing the relative contributions of the various
sources of error to overall seasonal adjustment uncertaint y. This can be done by
comparing the usual posterior means and variances with those that result when the
variances of particular error sources are set to zero.

The Bayesian approach requires explicit distributional assumptions about the
innovations in the time series models for the components of Yy Throughout the paper we
assume normal distributions. The basic approach would work under other distributional
assumptions, but use of nonnormal models in time series is difficult, and we shall not
pursue this here.

Section 2 gives a general overview of our approach. The details are best illustrated in
the context of an example, which is done in section 3 using a monthly time series of 5 or
more unit housing starts in the south region of the United States. Sections 4 and 5 discuss

extensions of the approach as presented in sections 2 and 3 to handle autocorrelated



sampling errors and to handle signal models with regression terms.

2. General Approach

Bell and Hillmer (1990, 1992) discuss development of time series models for the
sampling error (e,) and signal process (Y,). They use ARIMA models for both, with the
model for Y, augmented with regression terms as appropriate. Other enhancements are
used with the e, model to account for particular features of survey designs and estimators.
We take this work as a point of departure, and will not discuss model construction here.
We focus instead on Bayesian treatment of the models, culminating in the development of
posterior means and variances for the St and N ¢ components. Our primary interest is in
how these are affected by the various error sources, particularly parameter uncertainty and
decomposition uncertainty. The presentation of our approach in this section is very

general; details of the approach are illustrated by the example of section 3.

2.1 The Sampling Error ( e, ) Model — Bayesian Development

We assume that sampling error covariances, Cov(et, ej), have been estimated for
some set of time points t, j=1, ..., m. We let C, j denote the estimates, and denote the
mxm matrix of these covariance estimates by C = [Ctj]' For convenience of notation, and
without loss of generality, we are writing this as if the ctj correspond to the first m time
points at which the series Yy is observed. The Cy jcan actually be for any set of m
successive time points with no change in our results.) We generally assume stationarity of
e, 80 Cov(et, e, +k) depends only on k, not t. If ¥ represents the logarithms of the
original survey estimates, then we are actually assuming relative covariance stationarity of
the original sampling errors (call these §t), and e, is approximately the relative sampling
error (e, = ¢ ; /exp(Yt)). In either case, we assume that, based on the appearance of the
Ctj’ and on knowledge of the survey design and estimation procedures, a stationary

ARMA (pe, qe) model,



(1-¢B - - ¢Ie)eBpe)et =(1-6B-- - 49gque)bt (2.1)

where the b, are iid N(0, ‘7‘[2)): has been selected for e;. Modifications can be made to (2.1)
to deal with certain known nonstationarities of the sampling errors, such as variances
fluctuating over time in known ways or independent redrawings of the sample. All the
above aspects of sampling error modeling are discussed by Bell and Hillmer (1990, 1992).
Let a, = (¢§, v Se’ 0?, .
develop a posterior distribution for @, given the available data, C, denoted p(gel C). This

036, atz))' denote the parameters of (2.1). We seek to

"posterior" then serves as a "prior" in the next stage of the analysis where we include
information from data on the time series Vi
If the e, are uncorrelated over time, then @, is just 012) = Va,r(et) = ag, and we can

%, e sri, where the sf are the diagonal elements of C, which

reduce the data from C to s
are the estimates of the Var(et)’s. The posterior then simplifies to p(ag | s%, ey sli). We
suggest two approaches for this case. One approach assumes the s% follow scaled xi

distributions for some v. Though estimates of variances (or relative variances) in repeated

surveys are rarely a simple mean sum of squares that wci ld suggest the X,2, distribution,

2
t

follow lognormal distributions. Both these approaches are illustrated and compared for the

nevertheless, this may be a useful approximation. The second approach assumes the s

example in section 3.

In the general case where e, is autocorrelated the development of p(e,|C) is more
involved. To avoid obscuring the discussion at this point. we defer remarks on this topic to
section 4. For the remainder of this section we assume that p( ge| C) is available, in the

sense that it can be computed for any given value of @,



2.2 The Signal (YI) Model and the Posterior Distributiorn. of Model Parameters
We use a seasonal ARIMA model for Yt of the following general form:

#(B)(1-B)}(1-B'%) v, = 0(B)(1-0,,B)a, (2.2)

where ¢(B) =1 - $B -~ qprp and 6(B) =1 - ;B -~ 0qu are nonseasonal AR
and MA polynomials of degrees p > 0 and q > 0, d > 0 is the order of nonseasonal
differencing, and a, is iid N(0, ai). Notice the presence of the seasonal difference and
seasonal MA term in (2.2); this is important for the seasonal + nonseasonal decomposition

discussed in section 2.3. We can also augment (2.2) with linear regression terms as

#(B)(1-B)A1-B1)y, - élxitﬂi] = 0B)(1 - 0,,B'2), (23)

where the x;, might be used to explain the effects of, e.g., calendar variation or outliers.
The usefulness of models of form (2.2) and (2.3) in seasonal adjustment is discussed in
Hillmer, Bell, and Tiao (1983). For simplicity of presentation here we focus on the simpler
model (2.2), and defer discussion of the model (2.3) to section 5.
2 .
Let a = (¢1,...,¢p, 01,...,0q, 0,9, o) be the parameters of (2.2). Given p(e,|C) as

discussed in section 2.1, and a prior density p(gz), the joint posterior density of the

parameters is (let y = (yl,...,yn)' be the observed data on the time series Ys)
P(o 2]y, C) xp(yles &, C) p(g, g C) (2.4)

=p(yla o) p(e,|C) p(a) - (2.5)



We make two assumptions in going from (2.4) to (2.5). First, we assume C tells us nothing

about y beyond the information in a,, so that p(yl e, Qs C) = p(yla, ge), ie., yand C are

assumed conditionally independent given o and Q. (See sections 2.4 and 4 for related

comments.) Modeling conditional dependence of y and C, if it were present, seems a

difficult task. Second, we assume that @ is a priori independent of @, and C, so that
(e ,|C) = p(e,|C) p(a).

In the special situation when e, is white noise we can replace @, by Ug and C by
(s%, T si) in (2.4) and (2.5). We shall use the noninformative prior, p(@) « 1/02, over
the parameter space with ag > 0 and with the ARMA parameters restricted to lie within
the stationarity and invertibility regions. This last condition means that | 012l <1, and

that the zeroes of ¢(B) and 6(B) lie outside the unit circle.

Computing (2.5) requires computation of the likelihood function p(yle, a,). For

nonstationary time series models the likelihood is defined as the Jjoint density of the

. d 12 -
differenced data, w, = (1-B)"(1-B )y, Letw = (W12+d+1, o, W)’ and I, =
Y (o &) = Var(w). Then the likelihood is defined as

-L/2

p(yl e 2) = p(wle, o)) « |Z, |72 exp{(-1/2) w s lw). (26)

Ansley and Kohn (1985) justify this choice of the likelihood function through "diffuse
priors" on starting values, and propose a modified Kalman filter for its computation. As
discussed in Bell and Hillmer (1992), (2.6) may be evaluated by the ordinary Kalman filter
using an initialization given in Bell and Hillmer (1991).

With a sufficiently long time series, p(a, o e|3~r, C) might be approximated by a

(truncated) normal density with mean given by the values (&, a,) that maximize the

posterior density (2.5), and with variance matrix given by the negative inverse Hessian



(second derivative) matrix of log[p(a, a,|y, C)] evaluated at (&, a,). (Box and Jenkins

(1970, section 7.4) discuss asymptotic Bayesian inference for nonseasonal ARMA model
parameters when the time series Y, is observed (no sampling error).) Reparameterization
of G'Z and crg to log(ai) and log( ag) may improve the normal approximation, and will
remove part of the need for truncating the asymptotic normal distribution. We still need
to truncate the normal distribution to the stationarity and invertibility regions for the
ARMA parameters. An important reason for considering this asymptotic normal
approximation to the posterior distribution is that simulation of parameter values (gz, ge)
from such a distribution is easy. This greatly facilitates the computation of posterior
means and variances of S " and Nt by Monte Carlo integration, as discussed in section 2.4.

Certain features of the posterior density, p(a, gze|y, C), may be of independent
interest, apart from the role of p(a, a, |y, C) in the computation of posterior means and

variances of S ; and N;. Two particular features come to mind. The first is the marginal

posterior density of 019, p(012|3~7, C). As discussed in Hillmer, Bell, and Tiao (1983), the

value of 012 reflects the stability of the underlying seasonal component. Values of 012 near
to 1 reflect a seasonal component that follows a nearly fixed annual pattern, while values of
012 far from 1 (e.g., .5 or less) reflect a seasonal component whose annual pattern can
change much more rapidly over time. (This statement is most accurate in the absence of
"decomposition uncertainty" as discussed in the next section, e.g., if we are using the

canonical decomposition defined there.) Examination of P05y, C) tells us what

information the data provide regarding the stability of the seasonal component. Secondly,

it is of interest to compare the marginal posterior density, p(gely, C), with the "prior"
p(gzel C). This tells us how information from the time series data y adds to our knowledge

about the sampling error model parameters X beyond what we know about @, from just

the estimates of sampling error variances and covariances contained in C. These and other



analyses of the posterior density p(q, ge|y, C) might be done using its asymptotic normal

approximation. If this approximation is inadequate, such analyses will require specialized

Bayesian simulation techniques, discussed briefly in section 2.4.

2.3 Seasonal 4+ Nonseasonal Decomposition

Burman (1980) and Hillmer and Tiao (1982) address the following problem. Suppose
we have a given seasonal ARIMA model of form (2.2) for Y,. What ARIMA models for
the independent components in Yt = St + Tt + It are consistent with the model for Yt’
while satisfying certain assumptions about the nature of seasonality, trend, and the
irregular? "Consistent" means that the corresponding spectral densities satisfy the relation
fy(A) =15(X) + fn(A) + £5()). We refer to the determination of component models
consistent with a given model for Yt as a seasonal + trend + irregular decomposition.
Combining Tt + It as Nt yields a seasonal + nonseasonal decomposition. (The spectral
density £y,(}) of Y, following (2.2) is the nonnegative function of \ € [-r,7] defined by
fy(0) = | ) (1-0,5¢"2%) 262/ {27] (1) (1-62)3(1-¢12%) |2}, The spectral densities
of 5, T, and L (fg(A), £p(X), and f;()) are defined analogously in terms of their models.
Because stationarity is formally required for a spectral density to exist, for models that
involve differencing these are often called pseudo-spectral densities.)

Burman (1980) and Hillmer and Tiao (1982) make assumptions leading to a unique
decomposition called the "canonical decomposition," thereby defining the canonical
seasonal, trend, and irregular component models. We write the canonical decomposition as
Y, =8 + T, + I,. For the model (2.2), the canonical decomposition models can be

written as follows:
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11\g 11
(2) (4B + - +B )5 = (105 B—-—0g, B )n,
d+1
(b)  $(B)(1-B)* ! T, = 4 (B)ny, (2.7)
(c) I, is white noise

(d) Var(ft) E b‘% , 1s the maximum value consistent with (a) — (c) and (2.2).

Here HT(B) is an MA polynomial whose degree depends on the particular ARIMA model
(2.2), and 14 and My are white noise. The restriction of I to be white noise is without
loss of generality for our purposes, since our focus will be on Nt = Tt + It' Burman (1980)
discusses canonical decomposition for models somewhat more general than (2.2).

Bell and Hillmer (1984) discuss justifications for the assumptions leading to (2.7).
Relaxing one or more of these assumptions permits other decompositions, Yt = St + Tt +
I,, that are still consistent with the model (2.2). All such decompositions are called
"admissible decompositions". The assumption that is easiest to relax is (2.7 .d). In fact,
any 0% € [0, 6%] corresponds to an admissible decomposition in the following way. Let

v € [0,1], and let e;y and I%—'y be independent white noise series with variances 'y&% and

1—y 52, respectively. Then
I
Y, = S+ N, = (5, +e)) + (T, + 177 (2.8)

defines an admissible seasonal + nonseasonal decomposition for any v € [0, 1]. Notice that,
in general, S t and Nt depend on 7, and hence posterior means and variances of S t and Nt
will depend on what we assume about 7. Sometimes we will explicitly write SZ (= §t +
e:ﬁy) and NZ (= Tt + I%_'y) instead of just S, and N ; to emphasize the dependence on 7.
Notice 1 is the proportion of white noise variance 5% added to the canonical fS(A), and 1-7y
is the proportion of 5’% added to the canonical fT()\), to define the spectral densities of Sz
and N7

We define (seasonal + nonseasonal) decomposition uncertainty as uncertainty about
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7in (2.8). From a Bayesian perspective such uncertainty should be expressed in a
probability distribution about v on [0, 1]. Since (2.8) will be consistent with the model
(2.2) for any 7 € [0, 1], the data contain no information about 7. Therefore, knowledge
about y comes entirely from its prior distribution. We focus on two possibilities:
(1) believing the canonical decomposition is appropriate, so that v is degenerate at 0, i.e.,
Pr(y = 0) = 1; (2) ignorance about 1, expressed as 7 ~ U(0,1). We let p(+y) be the prior
density of 7. If the prior distribution for v is degenerate at 0 (or any other given value, e.g.
7=".5), p(7) can be thought of as a "delta function" (Jenkins and Watts, 1968, pp. 31-32).
It should be noted that decomposition uncertainty is an inherent feature of the
seasonal adjustment problem that must be faced by all approaches to its solution, both
model-based and empirical. The distinction of the work of Burman (1980) and Hillmer
and Tiao (1982) is that they explicitly recognize decomposition uncertainty and deal with
it through stated assumptions (leading to the canonical decomposition), whereas most
other approaches to seasonal adjustment simply ignore the problem of decomposition
uncertainty, effectively dealing with it by default — see Bell and Hillmer (1984) for a
discussion of this point. Watson (1987) is one exception. Taking a frequentist approach,
he treats v in (2.8) as an unknown, nonestimable parameter, and develops mini-max

estimates of S t and Nt in this framework.

2.4 Posterior Means and Variances of St and N, (Signal Extraction)

We assume y, = Y, + e, withe, and Y, following the models (2.1) and (2.2). The
parameters are q, @y and 7. We assume we have developed a posterior density,
p(a, 9‘e|3~" C), as discussed in section 2.2. We also assume p(7), a prior on 7, has been

specified. The joint posterior density of (a, @, %) is then simply p(e, gze|3~r, C)p(7), since

71is independent of the data. For the moment, we assume we can simulate values of (g,

Qo 7) from the posterior distribution corresponding to this density.
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For given values of g, @, and 7, the decomposition (2.8) is determined, and then,

under suitable assumptions, the conditional distributions given y of S;y and N;y in i =

Sz + NZ + €, are normal with means and variances given by nonstationary signal
extraction results discussed by Bell (1984a), Ansley and Kohn (1985), Kohn and Ansley
(1987), and Bell and Hillmer (1988, 1991). The "suitable assumptions" that we make have
to do with starting values for the ARIMA difference equations; either assumption A of Bell
(1984a) or the diffuse prior assumptions of Ansley and Kohn (1985) may be used.
Application of signal extraction results to repeated survey estimation and to seasonal
adjustment is discussed in many of the references to these topics cited previously. In
particular, Bell and Hillmer (1992) show how these calculations may be carried out by
coupling the Kalman filter (initialized as discussed in Bell and Hillmer ( 1991)) with the
fixed point smoother of reduced dimension described in Anderson and Moore (1979). This
approach has been implemented in the REGCMPNT program developed by the time series
staff of the Census Bureau. This software was used for the application in the next section.

The signal extraction techniques thus allow us to compute E(St |, X y) and
Vz:mr(St |, R y)fort =1, ..., n, and similarly for N;. We assume it is unnecessary to
also condition on C, i.e., E(Stl @ a7, y) = E(Stl @G 0, 7Y, C) and
Var(S, |, @ 7 y) = Var(S ila &, 7 Y, C), and similarly for N ;- (Analogous to what

was done in section 2.2, we could go slightly further and assume @, provides all the
relevant information about the sampling errors, so that S ¢ and C are conditionally
independent, and so are Nt and C.) These quantities determine the corresponding
marginal conditional normal distributions of S t and Nt' Joint conditional distributions of
St and Nt’ or of S " and Sj for j # t, etc., would also require calculation of the appropriate
conditional covariance.

Our objective is to obtain posterior means and variances of St and Nt’ These are
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E(S,|y, C) and Var(8; |y, C), and similarly for N, . Inlight of the above remarks, these

depend on C only through the posterior distribution of the model parameters, i.e., through

p(a, gzel ¥, C). To simplify notation, we let ):c = (y, C), with this notation used to
emphasize that conditioning on both y and C really uses C only through p(a, a, ly, C). To
obtain E(S, |y, C) = E(S,|y") and Var(8, |y, C) = Var(S, |y©) we use the following

relations:
E(S;1y°) = EIE(S,| & o, 7 y)1¥°]
= [ E(S;la ay 7 y) p(a, ]y, C) p(7) dada dy (2.9)
Var(St|¥C) = Var[E(S, | q, Qo T, y)lzc] + E[Var(S, ] o, Y, ¥)|¥C] (2.10)

We can approximate (2.9) via Monte Carlo integration by: (1) simulating @, a,, and y

from the distributions corresponding to p( @, ge|¥, C) and p(7); (2) computing

E(St| @ a7, y) for each simulated @, a, 7; and (3) taking the sample mean of the
E(S tl @ o, 7, y)’s over the simulations. To approximate (2.10) we proceed similarly,
evaluating both E(S, | a, @, 7 y) and Var(St |, @ 7, y) at step (2), then taking the

sample variance and the sample mean over the simulations of these respective results, and

then adding these together to get Var(S, | }_rc). Analogous procedures obviously yield
E(N,|y") and Var(N, |y°).

The above assumes that we can simulate from the posterior distribution with density

p(a, gzely, C)p(7). As is discussed shortly, simulation of v is actually unnecessary for the
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cases we are interested in. Simulation of the model parameters from the posterior

distribution with density p(a, Q‘ely’ C), is a problem of some concern, however. If the
(truncated) asymptotic normal approximation to p(a, gel}_r, C) discussed in section 2.2 is

deemed adequate, then this distribution can be easily used for simulation. If asymptotic
normality does not provide an adequate approximation, then specialized simulation
techniques are needed. How to simulate from a nonstandard distribution whose density
can be calculated is currently a problem of great interest in Bayesian statistics; see Gelfand
and Smith (1990) for a general discussion. Some of the approaches discussed there (e.g.
Gibbs sampling) have been applied to time series models, although most such applications
have been to autoregressive models. Marriott, et. al. (1992) and Chib and Greenberg
(1992) discuss applications to nonseasonal ARMA models (the latter allow the model to be
augmented with regression terms). We are unaware of any applications as yet of such
simulation techniques to time series models as general as those we consider here. For our
example we used a variant of acceptance-rejection sampling (Ripley 1987), as discussed in
section 3.3. This approach was reasonably convenient for our particular example, but
cannot be recommended as a general technique.

Importance sampling (see Geweke (1989)) seems a promising general approach for
calculating the posterior means and variances of S t and Nt‘ This approach replaces (2.9),

for given 4, by
E(S 13 1) = 1 E(S; e, &, 1 ¥) [p(a, %y, C)/f(e, &) (e, o) dada, (2.11)

where f( @, ge) is a probability density corresponding to a standard distribution from which
simulation is easy, e.g., the truncated asymptotic normal approximation to the posterior.

Computation of E(Stl)jc, 7) from (2.11) via Monte Carlo is done as for (2.9), but with a

different integrand, and with (o, a,) simulated from the distribution corresponding to
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f(a, Q:e). The integrand requires computation of E(S tl @ a, y) as before, and of the
importance function, p(a, gel ¥, C)/{(a, gze). The numerator of the latter is computed as

discussed in section 2.2, and computation of the denominator is generally easy (e.g.,
evaluation of a low dimensional multivariate normal density). The terms in the posterior
variance expression (2.10) can be computed in the same way, but using different
integrands. One drawback to importance sampling is that it does not produce simulations

of (o, a,) from the exact posterior distribution with density p(e, a,|y, C), and so does not

provide a means for examining the exact posterior distribution of the model parameters.
Regarding 1, the two cases of primary interest are: (1) vy =0, i.e., the canonical

decomposition; and (2) v ~ U(0,1). If p(7) is degenerate at any value we simply fix « in

(2.9) and (2.10), and we obviously need not simulate 7. If v - U(0,1), we can analytically

integrate out 7 to obtain the following results for the posterior means and variances of S ¢ =

7.
St’

B(S75%) = E(sH/2[y%) (2.12)

Var(71y%) = Var(s{/?15%) + (1/3){Var(t/?y%) + [BAM2)y%%) - B(22IyS)6 (2.13)

with analogous results for the posterior means and variances of N t = NZ . (The notation

S%/2 means Sfﬁyfor v = 1/2, which is §t + e%/2 — see (2.8). It does not mean ﬁ:.) The
results (2.12) and (2.13) are derived in the appendix. The quantities needed to evaluate
(2.12) and (2.13), along with the analogous results for N;y, can be obtained by performing
the Monte Carlo signal extraction computations for both the three component
decomposition Yt = S%/ 2 + Tt+ I%/ 2, and the two component decomposition Yt = S%/ 2 +

N %/ 2. The posterior mean of 62, E( &%l}:c) = E( a%h:, C), can be approximated via Monte

Carlo by taking the average of the 5‘% values over the simulations from the exact posterior
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distribution defined by p(e, 9‘e| ¥, C). Alternatively, importance sampling could be used to
approximate E('&%h_r, C).

We note in passing that if one can simulate from the posterior distribution of the
parameters, then one can also produce simulations from the marginal posterior
distributions of S ¢ and Nt’ by Monte Carlo. This is done by simulating values of S t from

the normal distribution with mean E(Stl @ 0y, 7, y) and variance Var(St| @ o, 7, y) for

each set of simulated values of (g, Qo 7). This will generally require more simulations
than are needed for the posterior means and variances (to produce reliable results), it will
produce a very large file of the simulated St (and N t) values for each time point, and it will
leave one with the problem of how to summarize these simulations from a large number of

marginal posterior distributions. We will not pursue this topic in this paper.

3. Application: 5 or More Unit Housing Starts. South Region of the U. S.

To illustrate our approach, we analyze data on 5 or more unit housing starts in the
south region of the U. S. Figure 1 shows a plot of the time series of original monthly
survey estimates (z,) from January 1975 through November 1988 (167 observations). (The
data were obtained from the Construction Statistics Division of the Census Bureau. The
scale is omitted from the plot to prevent identification of the actual numbers of this
unpublished series.) This data was previously analyzed by Bell and Hillmer (1992), who
estimated the following model for ¥, = log(z,):

v, =Y, +e t=1,..,167
12 12 .. 2
(1-B)(1-B)Y, = (1-0;B)(1 - 0,,B)a, 2, 1id. N(0, 02)  (3.1)

e, i1.d. N(0, o2)
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The parameter estimates were 91 = .53, 312 = .80, &g = .0510, and &z = .0162. To
develop the e, model, estimates of relative sampling variances and autocorrelations at lags
1, ..., 23 were available for each of the 60 months of the years 1982 through 1986.
Averaging autocorrelations for a given lag over time yielded -.06, —.11, —.02, —.02, and .04
at lags 1 through 4 and 12, suggesting little autocorrelation is present in the sampling
error, thus leading to the white noise model for e ag was then estimated by the average
of the 60 estimates of relative sampling error variance, &g = .0162. This corresponds to a
sampling coefficient of variation of &e = .13, indicating a substantial amount of sampling
error is present. In fact, the Census Bureau does not publish monthly estimates of regional
housing starts by type of structure (single family, 5 or more unit, etc.) because of the
generally large amount of sampling error in these estimates. The remaining parameters of

(3.1) were estimated by maximum likelihood using the time series data y =

(¥1 -+ » ¥1g7)"» but holding o fixed at its estimated value of .0162. Bell and Hillmer
(1992) then used this estimated model for signal extraction estimation of Y,. Here, we
shall instead be concerned with obtaining posterior means and variances of St and Nt’
allowing for uncertainty in the model parameters and in the seasonal + nonseasonal

decomposition.

3.1 Sampling Error Model

For this example the only parameter of (2.1) is o2 = Var(e,) = o2 We assume this
b t e

variance is constant over time, and that the relative sampling variance estimates,

s%, ey 3131 are m independent, unbiased estimates of az. As in section 2.1, it is convenient
to label these s%, .y 8 131 despite their actual time points. We shall consider two possible

2

assumptions regarding the distribution of the s -

First, we assume that I/S?/ Ug ~ Xz% where v is the degrees of freedom in each s?. This
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assumption is suggested only as a potentially useful approximation. In fact, the survey of
construction (from which the estimates are produced) uses a stratified three-stage cluster
sample, and sampling variance estimates S% for the original estimates z; are obtained by
collapsing pairs of strata and using the Keyfitz two—per—stratum method. The estimate we
use of the sampling error variance of y; = log(zi) is the relative variance, s? = S? /z?
Thus, s? is not of a simple form that directly leads to a x:‘; distribution. Furthermore, the
appropriate value for v, the degrees of freedom assigned to each s?, is unknown.

Proceeding with the assumption that us?/ ag ~ x’2/, and using the noninformative prior

p(ag) x1/ ag, from Bayes theorem the posterior density of org is
p(aglv, s%, s sri) x (1/02);§1p(s?| 02, v)
= [P/ ™ (v/2)™/ 2(rils?)”/ 271 2y(m/ 2)‘1exp{(—v/2a§)§s?}
= 6057/ D expl(u20f) 26 (32)

where g(v) = [D(v/2)]™ g my/2 -1 (;S?)—my/z (I_Is?)yﬂ_l. Conditional on v, (3.2)
i i
defines a scaled inverse Xr%w distribution for ag (a xri , distribution for ViES? / ag). This is

a generalization of a standard Bayesian result for the case m = 1 (Box and Tiao 1973,

Theorem 2.3.1).

We suggest two ways to deal with the problem that v is unknown. First, we can use

the result that Vau‘(siz)/[E(s?)]2 = 2/v, to estimate v by ¥ = 2(52)2/V5r(s?), where 52 and

Vér(siz) are the sample mean and variance of s%, s Si. For this example, 52 = 0162 and
m = 60, as given above, and Vér(s?) = 1.04 x 10-4, giving 7 = 5.1. Using the
approximation v = 7, p(ogls?, N sgo) is then defined by mD§2/ag = 4.96/0§ - 1%117’
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where m = 306. Alternatively, to recognize uncertainty about v via a fully Bayesian
approach, we can multiply (3.2) by p(v), a prior distribution for v, and numerically
integrate the product over v to get the marginal posterior of "g' Two natural choices of
noninformative priors are a flat prior (p(v) « constant) or the Jeffreys’ prior. (See Box and
Tiao (1973, pp. 51-54) for a discussion of Jeffreys’ rule.) For our problem, the Jeffreys’
prior can be shown to be p(og, V) x (1/02)[1 + (y/2)¢'(y/2)]1/2, where ¢ (x) =
dz[log(I‘(x)] / dx2, is the trigamma function (Abramowitz and Stegun 1970, p. 260). Except
- for v < 2, however, [1 + (V/2)¢'(V/2)]1/ 2isa nearly constant function of v, and so, for
this example, the Jeffreys’ prior yields virtually identical results to those from the flat prior
for v.

The second general approach we consider is to assume that the log(s?) are
approximately normally distributed, i.e., log(s?) - N(p, v). From properties of the
lognormal distribution, and the assumption that E(s?) = ag, we have ag = exp{p + v/2},
and so log(ag) = p+ v/2. We want p(log(ag)l s%, s si), from which p(agl s%, e sri)
is easily obtained. Using the noninformative prior, p(y, v) « 1 /v, from standard Bayesian
results on inference for the mean and variance of a normal distribution (Box and Tiao 1973,
section 2.4), the joint posterior density of (g, v) is

2)

2 (3.3)

D, vIs3, ., 82) « pulv, 2, ..., s2) p(vs?, ..., s
where p(p|v, s%, ey 81%1) is a N(fi, v/m) density, and p(v| s%, . 51?1) is a scaled inverse
Xri—l density ((m-1)v/v - Xri—-l)' Here /i and ¥ are the sample mean and sample variance
of the log(s?). An approximate posterior is obtained by setting v = ¥ and using
-~ N(f, ¥/m), which implies log(ag) - N(it 4+ ¥/2, ¥/m). For this problem j = —4.285 and
v = .33, yielding an approximate posterior for log( ag) which is a N(—4.45, .0055)
distribution. The approximate posterior of az is then the corresponding lognormal

distribution. Alternatively, the exact posterior can be obtained by transforming from
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(g, v)to (p+v/2,v) = (log(ag), v), obtaining the joint posterior density of (log(og), V)
using (3.3) and the Jacobian of the logarithmic transformation, and numerically integrating

g2

1)» Which is then transformed to p( az{ s%, v sgl).

out v to get p(log(ag)l s%, e

Figure 2.a shows p(az| s%, s sé) resulting from the exact and approximate
treatments of both the chi-squared and lognormal models. The numerical integrations
required for the exact treatments were performed with the Mathematica computer package.
We see that all four posterior densities peak near .0162, the estimate of 02 obtained by Bell
and Hillmer (1992). The posteriors are all concentrated between about .013 and .020, and
they convey some uncertainty about ag. (The corresponding range on g the coefficient of
variation of the original survey estimates, is from 11.4% to 14.1%.) The difference between
the exact and approximate posteriors under the chi-squared assumption is interesting.
Notice that using the noninformative (Jeffreys’) prior for v produces a posterior for ag that
is more concentrated than the conditional posterior for ag obtained by setting v = ¥ = 5.1,
a result that may be contrary to expectations. Figure 2.b shows p(v| s%, ey 81%1) for the
chi-squared model, with virtually identical results obtained under the flat or J effreys’
(trigamma) priors for v.

We can use a model selection criterion such as AIC or BIC to decide on which
version of p(azlsi e sli) to use. (More formal Bayesian procedures could also be used.)
Since both the chi-squared and lognormal models involve two parameters, such criteria
reduce to 2x(log-likelihood) comparisons at the maximum likelihood parameter estimates.
For our example, the log-likelihood difference is about 1.5 in favor of the lognormal model.
Notice from Figure 2.a that the exact posterior under the lognormal model is very close to
the approximate posterior with v = 5.1 under the chi-squared model. We shall therefore
proceed with the second of these (which is easier to evaluate) so that p(ag | s%, e sri) is
defined by (3.2) with » = 5.1. This now becomes the "prior" for ag for the analysis of the

next section.
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3.2 Signal Model

We now use the time series data y to develop a posterior distribution for the

parameters (01, 012, ai, 0'2). From (2.5) the posterior density is

2 2 2 2
p(01, 012, oy Uehf’ 875 - 860) x

2 2 2,2 2 2
P(XI 01: 012; Ta» Ue) p(a'elsl; ey SGO) p(01: 012: Ua) (3.4)

2,2 2. . 2 2.
where p(oy, |57, ... , Sgo) is defined by (3.2) with v = 5.1, and p(y| 0y, 019 0y 03,) i8

defined as in (2.6) and can be computed by the suitably initialized Kalman filter. We use
. . . 2 2 2

the noninformative prior (0, 0y, 0,) 1/0; truncated to 10, <1, 10151 <1, g, > 0.

A multivariate normal approximation to the posterior for (01, 0,5, log( aﬁ), log( ag))’

(restricted to | 0,1 <1, | 0191 < 1) has mean vector given by the maximum posterior

density estimates, (3’1, 7912, log(&Z), log(&g))’, and covariance matrix given by the inverse

. .. . 2 2 2 2
Hessian (second derivative) matrix of — log[p(ﬂl, 010, log(aa), log(ae)l):, 87> s60)],

evaluated at (91, @12, log(&i), log(&z))'. A modification of the REGCMPNT program was
used to maximize (3.4) over (6 019 log(ag), log(ag))' to get the following maximum

posterior density estimates, with standard errors from the inverse Hessian in parentheses:

~ ~

b, =52 (.083) 01 ="79 (11) (3.5)

log(6%) = —2.98 (.17) =s B0y, 53, ..., 52,) = 0516.
log(62) = —4.12 (.081) =3 B0y, 83, ..., 55,) = .0162.

The Hessian matrix was evaluated by taking numerical second derivatives of the negative
log of (3.4), using formulas (25.3.23) and (25.3.27) given in Abramowitz and Stegun (1970).

The resulting posterior correlation matrix of the parameters is
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1 1.00

0
0, | 01 1.00
log(0?) | .20 -12 1.00 (3.6)

log(c?) [-11 -.03 —-22 1.00

Several things are worth noting about the results in (3.5) and (3.6). First, the
posterior mode estimates are very close to the parameter estimates obtained by Bell and
Hillmer (1992). Second, the (approximate) posterior mean of ag, E(a§|3~7, s%, ey sgo) =

.0162, is unchanged from E(a§|s%, ey sgo), the "prior" mean of ag without using the time

series data y. Third, (3.6) shows little posterior correlation between the parameters.

There is a small negative correlation between log( ai) and log( ag), which would be
expected, and a small positive correlation between 01 and log(ag), the reason for which is
unclear.

Figure 3 shows marginal densities for 01, 015, log( ai), and log(ag) from the normal
approximation to the posterior, as well as corresponding histograms of parameter values
simulated from the exact joint posterior. (1178 sets of parameters were simulated as
discussed in the next subsection.) In comparison with the normal approximation, the
marginal posterior of 01, and possibly those of 012 and log(ag), appear to exhibit some
skewness. The restriction to the invertibility region has an important effect on the
posterior of 012, and in fact the exact posterior density of 012 appears to "flatten out" into
the invertibility boundary 012 = 1 at a somewhat higher level than does the normal
approximation. These deficiencies in the normal approximation may not be very important
for our purpose of computing posterior means and variances of St and Nt by Monte Carlo
integration.

Finally, though not shown here, the normal approximation to
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p(log( az)l Y s%, e sgo) was transformed to a lognormal approximation to
( 2[ s s2 ), which was then plotted on the same graph as (azls2 s2 ), the
b Ue y; 12 2 %60/ b grap b el®1) -+ 2 %0/

"prior" for ag developed in the previous section (from (3.2) with v = 5.1). The two curves
were virtually identical. Thus, apart from possible deviations of the true posterior of

log( og) from the normal approximation, we can say that P(Ughﬁ Si’ v S%O) ¥

p( ‘7§| s%, . sgo). In other words, the time series data y add nothing to our knowledge

2 2

about ag beyond the information contained in the variance estimates 81> -+ » Sgp-

3.3 Simulating from the Exact Posterior Distribution of the Model Parameters

We produced simulated values of (01, 012, 0221’ Ug) from their exact posterior
distribution (with density defined by (3.4)) for use in the Monte Carlo integration results
of section 3.4, as well as for the comparisons with the normal approximation to the
posterior made in the last section. The simulations were done using a variation on
acceptance-rejection sampling, as follows. First, a set Q was defined in the four
dimensional parameter space of w = ( 0, 0,0, log(ai), log( ag)), such that Q was thought to
contain virtually all the posterior probability. Then, values of w were simulated from a
uniform distribution on this set. (The definition of 0 and simulation on  are discussed
below.) These w values were accepted or rejected as simulations from the true posterior

according to the following scheme:
For each w simulated from the uniform distribution on Q:

(1) Simulate U from the U(0,1) distribution.

(2) U <p(w]y, C) / max[p(w|y, C)], accept w ; otherwise, reject w.

At step (2) max[p(wly, )] = p(&ly, C) where & = (B, 8, log(52), log(5?)) is the set of
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maximum posterior density estimates defined in (3.5). It can be seen from Ripley (1987,
pp. 60-61) that the accepted w values constitute a random sample from the true posterior
of w, with density p(w|y, C). Finally, simulated values of log( ag) and log( Ug) were

exponentiated to give simulated values of ag and ag.

The set 2 was defined as the intersection of (i) the standard four dimensional 99.95
per cent confidence ellipsoid for w from the asymptotic normal approximation to the
posterior given in section 3.2, and (ii) the invertibility region (| 0,1 <1, | 015 <1).

Values of p(w|y, C)/p(&|y, C) were computed at the points w where the ellipsoid (i)

intersected the w-axes, and also where it intersected the principal component axes, to

verify that the exact posterior density p(wly, C) was very small at these boundary points
of Q ("very small" was defined as p(wly, C)/p(w|y, C) < .001) . To simulate from a

uniform distribution on Q we first defined a four dimensional "box" just containing
whose sides were parallel to the principal component axes. We then simulated uniformly
on this box by independently simulating each {i in ¢=(¢ R ¢ 4)/ = Pwon the
appropriate interval defined by the box, where P is the matrix of eigenvectors of the
variance—covariance matrix for the asymptotic normal approximation to the posterior of w.
After translating each ¢ to w=P’{(, we rejected any values w lying outside of Q2 (values w
lying outside either region defined in (i) and (ii) above).

The general drawback to this use of acceptance-rejection sampling in multiple
dimensions is that the acceptance rate in step (2) above is very low. We generated 50,000
simulations from the uniform distribution on  to produce 1178 simulations from the exact
posterior, an acceptance rate of about 2.4 per cent. For most problems this acceptance rate
would be unacceptably low. This was not of such great concern to us because the
computational cost of doing the 50,000 simulations from the uniform distribution on Q was
trivial, and the computational cost of applying the accept-reject rule (2) above to the

simulated w values was low, relative to the cost of computing the conditional means and



25

variances of S, and N, for the simulated w values (signal extraction). We needed to
perform the latter only for the 1178 accepted parameter values. Although it was |
convenient for this particular example, we cannot generally recommend the
acceptance-rejection scheme for problems of this type, particularly for models with more

than four parameters.

3.4 Analysis of Posterior Means and Variances of St and Nt

Having produced sets of simulated values of the parameters 01, 912, ag, and Ug from
their exact posterior distributions, we can approximate the posterior means and variances
of 5, and N, (for t =1, ..., 167) by Monte Carlo integration as discussed following (2.9)
and (2.10). This directly gives us the results we want for any specified 7, such as y =0
(the canonical decomposition). The corresponding results when 7 - U(0,1) are obtained
using (2.12) and (2.13). Comparing results when 7 - U(0,1) with those obtained when
7= 0 (or any other fixed value) provides information about the effects of decomposition
uncertainty. Also, comparing the true posterior means and variances with signal
extraction results obtained with parameters held at given values (e.g. the maximum
posterior density estimates & given in (3.5)) provides information about the effects of
parameter uncertainty on posterior means and variances. We now investigate these issues
for our example.

Figure 4 shows posterior seasonal factors, exp{E(S, |¥C)}, for the canonical

decomposition (y = 0) and for the case of 7 - U(0,1). From (2.12), the latter are the same
as the seasonal factors for 7 = 1/2. The canonical seasonal factors show sharp drops in the
winter (particularly January and February), spring and fall peaks, and a slow evolution
over time. The general pattern of peaks and drops can also be found in the graph of the
seasonal factors when v - U(0,1), but there it is obscured by pronounced year—to—year

fluctuations. These fluctuation arise from the additional white noise assigned to S ; since,
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1/2 1/2 _ & 1/2 .
when v - U(0,1), E(SZ|¥C) = E(St/ |¥c), and St/ =5, + Et/ includes 1/2 the

maximum possible white noise that can be assigned to the seasonal component.
Corresponding plots of posterior means for Nt (not shown) exhibit the reverse behavior:

E(NZLYC) is smoother when + - U(0,1) (equivalently, v = 1/2) than when 7 = 0. These

results show that decomposition uncertainty has a marked effect on posterior means.
Figure 5 shows the ratios of the posterior seasonal and nonseasonal factors for the

canonical decomposition to the corresponding canonical factors obtained from signal

extraction calculations with the model parameters set at the estimates w. That is, Figure 5

shows exp{E(S, |7 = 0, ;zc)} [ exp{E(S;|w= &, =0, yc)}, and similarly for N,. While

these ratios vary erratically over time, few deviate from 1 by more than plus or minus one
per cent. The corresponding plots (not shown) for the case of y - U(0,1) (equivalently,

7 = 1/2) also fluctuate over time, but are even closer to 1: few deviate from 1 by as much
as +.5%. These results show that parameter uncertainty has little affect on the posterior
means for this example. Hence, if point estimates were the only quantities of interest,
simply doing signal extraction with the estimated parameters would be sufficient.

We turn now to consideration of posterior variances. The effects of parameter
uncertainty on posterior variances can be examined in two ways that turn out to be
roughly equivalent. First, we can compare posterior variances with variances conditional
on parameters set at their estimated values. Alternatively, we can examine both terms in
the posterior variance expression (2.10): the variance (over the simulations) of the
conditional expectations (the contribution of parameter uncertainty), plus the average
(over the simulations) of the conditional variances. The two approaches are roughly
equivalent for this example because the second term in (2.10) turns out to be very close to
the variance conditional on w= c:u (For the canonical decomposition, percentage
differences between these two were generally less than 6% for S, and 1% for N,.)

Figure 6 shows, for the canonical decomposition, posterior variances (solid curves) of
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S; and N ; along with variances conditional on estimated parameters (dotted curves). That

is, Figure 6 shows Var(S |y = 0, ):c) and Var(S, |w= &, v =0, Zc), and similarly for N,.

Several points are worth noting from the graphs. First, the variances conditional on
estimated parameters are smooth functions of time that are actually symmetric about the
midpoint of the series (t = 84), while the posterior variances are erratic functions of time.
Thus, the effect of parameter uncertainty on the posterior variances is itself an erratic

function of time. (Note: The differences between E[Var(Nt |w, =0, y)] ):c] and
Va,r(N,5 |w= b, y=0, y), though small, are responsible for the solid curve dipping slightly

below the dotted curve at a few time points in the lower graph of Figure 6.) Second, the
posterior variances of N, tend to be about twice as large as those for S ¢ (for the canonical
decomposition). Finally, both the variances conditional on estimated parameters and the
posterior variances increase at either end of the series. This behavior is standard in
seasonal adjustment, and arises because signal extraction point estimates can be thought of
as deriving from application of symmetric linear filters to the time series Yy extended with
forecasts and backcasts. This "forecast extension" implies additional uncertainty near the
ends of the series where the symmetric signal extraction filters make heavy use of the
forecasts and backcasts in place of the unobserved Y8

For a direct measure of the magnitude of the contribution of parameter uncertainty
to posterior variances in the canonical decomposition we referred to (2.10), and computed

and examined graphs (not shown here) of Var[E(S, | w, 7=0, Y)I-YC] /Var(St | 7=0, yc), and

similarly for Nt' These ratios are very erratic over time, as would be expected from Figure
6. The ratios for St rarely exceed .2, and are usually less than .1, while those for Nt rarely
exceed .1, and are usually less than .05. From these results we conclude that the
contribution of parameter uncertainty to the posterior variances in the canonical
decomposition is generally small, though erratic over time, and not negligible at all time

points. We examined graphs (also not shown here) of the analogous ratios measuring
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contribution of parameter uncertainty to posterior variance when 7 - U(0,1). In this case
the ratios are also erratic over time but are smaller than those for ¥ = 0. For S ¢ these
ratios rarely exceed .04 and for Nt these ratios rarely exceed .03. We conclude for this
example that, when y - U(0,1), the contribution of parameter uncertainty to the posterior
variance is negligible. This was confirmed by an examination of graphs analogous to
Figure 6 but for the case v - U(0,1), which showed very small differences between the solid
and dotted curves. A final point worth mentioning is that these graphs also showed that
when 7 - U(0,1) even the variances conditional on estimated parameters are not smooth
functions of time. This latter result is due to the contribution of a term,

Var(I%/ 2| w, yc) + [E(I%/ 2| w, yc)]2 , as in (2.13), which is not a smooth function of time,

even though it is conditional on the estimated parameters.

Figure 7 compares posterior variances when + - U(0,1) with those from the canonical
decomposition. The former are always substantially larger than the latter for St‘ For Nt
the posterior variances for 4 - U(0,1) are more often than not smaller than those for v =0,
but occasionally the posterior variances for v - U(0,1) are much larger. This behavior can

be explained by reference to (2.13), which shows that in this case Var(N, | }:c) equals

Var(N%/ 2|¥c) plus additional terms. It turns out that Var(N%/ 2|¥c) and Var(Nglyc) are

not very different, so the difference between the two curves in the bottom graph of Figure 7
is due mostly to the "additional terms" from (2.13). The additional terms vary erratically
over time, being negative more often than they are positive, but occasionally being positive
and large. In any case, Figure 7 shows that posterior variances are very sensitive to

decomposition uncertainty.

3.5 Conclusions (for the example)

Based on the preceeding analysis, we can offer the following conclusions for this

example.
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1. The time series data y tells us nothing about ‘72 beyond the information in the

sampling error variance estimates s%, vy S%O'

2. Parameter uncertainty has a very minor effect on point estimates (posterior
means) of S t and Nt‘ Parameter uncertainty has a generally small effect on
posterior variances for the canonical decomposition, but its contribution varies
erratically over time and is not always negligible. The contribution of

parameter uncertainty to the posterior variances when v - U(0,1) is negligible.

3. Decomposition uncertainty has an important effect on posterior means of S ¢

and Nt’ and can have a huge effect on posterior variances of S ¢ and Nt'
The obvious general conclusion is that careful thought should be devoted to assumptions
about the decomposition parameter 1, since (i) what is assumed about 7 has a profound

effect on the results, and (ii) the data carry no information about +.

4 Extension: Autocorrelated Sampling Error

Suppose estimates Ctj = Cov(et, ej) t,j = 1,...,m are available, and let C = [ct j] be
the mxm matrix of these covariances. The multivariate analog to the scaled x,2/
distribution used in section 3.1 is to assume C has a scaled Wishart distribution with v
degrees of freedom — see DeGroot (1970, section 5.5) for a discussion. The mean of this
distribution is the covariance matrix of m successive observations of e, following the model
(2.1) — call this matrix E(ge). Coupling a prior p(ge) with the Wishart likelihood, the

posterior for a is (for known v)
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p(a,|v, C) « p(a,) P(C| o, v)
= g(1) B(2p) |2(2)| ™2 exp{~(1/2)te%(a,) " C]} (41)

where gz(u) includes those terms in the Wishart distribution not explicitly present in (4.1)

that involve v. A possible noninformative prior for a, is p(ge) x1l/ a%. If v is unknown,

_ 2
tt = 5t
have scaled xl2/ distributions. Alternatively, we could consider multiplying (4.1) by a prior

the variances Cyps e s Oy TAY be used to estimate v as in section 3.1, since the ¢

density p(v) and numerically integrating over v to determine p(gze| C). Depending on the
dimension of a,, use of this fully Bayesian approach may be difficult in practice, since

simply evaluating p(gel C) for any given a, then requires a numerical integration.
K

If the covariance estimates were of the form c,. = K X (v k=Y )(y.k —y.), where
tJ k=1 ¢ 7] J
the Vi) are observations on individual units k = 1, ..., K at time t, the survey estimators
K
1

y; are the sample means (yt =K X ytk)’ and the Yik fork =1, ..., K are assumed iid
k=1

normal, then C would indeed have a Wishart distribution. Furthermore, C would be
independent of the time series ¥4, an assumption used in obtaining (2.5) in section 2.
Though estimates of repeated survey variances and covariances (or relative variances and
relative covariances) are rarely of this simple form, the Wishart likelihood may still provide
a useful approximation. In any case, this approach provides an objective means of
combining the information from all the available Ct; in developing the posterior for Q.

As an alternative, let @, be a transformation of a, with log( a%) replacing a%. (We
might also consider some transformation applied to a partial correlation type
representation of the AR or MA polynomials, if any of the roots of these polynomials is

likely to be near the unit circle.) If m is large, and using a flat prior for :dre, we might

approximate p( @elu, C) by an asymptotic multivariate normal distribution N( G, V( @e)),
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where é‘e maximizes the posterior density, p(&,|v, C) « p(C| &, v), and V(@ze) is the
negative inverse Hessian (second derivative) matrix of the log—posterior. This normal
approximation to the posterior density is then easily evaluated for any given {xe.

One final alternative, that does not rely on the Wishart assumption, would be
multivariate time series modeling of log(ctt) and estimated autocorrelations, rt(k) =
C ¢ +k/ (cyy ¢ +k t +k)1/ 2 (possibly transformed). The estimate of the mean vector from
the multivariate time series model, and its associated covariance matrix, can be used to
define an asymptotic normal posterior distribution for the log variance and
autocorrelations. (The estimate of log[Var(e, )] should be bias adjusted as in section 3.1.)
Functionally relating the log variance and autocorrelations to @, defines a posterior for @,
This approach is most feasible when (2.1) is a low order AR model (pe is small), since then
only a few (pe) lag correlations need be modeled, and they can be functionally related to
the AR parameters and Var(e,) through the well-known Yule~Walker equations (Box and
Jenkins 1970, pp. 55-56).

5. Extension: Regression Terms in the Signal Model

The generalization of the results of section 2.2 to the model (2.3) with regression

terms is straightforward. In this case (2.5) becomes
p(@ B, 2,1y, C) « 0yl e, B, &) p(e,|C) p(a) .

Let Xpy = [xDit] be the (n—12—d) = r matrix of differenced regression variables, XDt =
(1-B)%(1-B')x,. Then
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p(yla B, o) = (W], B, &)

« 12172 exp{(-1/2)(w-Xp f) 5 (w - X )}
= 12, |72 exp{(-1/2)lw - Xp B + X (BB 57 w - X8 + Xy (BB}

= {1Xp 5, Xp | Y2 exp{(-1/2)[8 - B X5 X (8- A1} =

-~

) (51
{|zw|“1/2 X Xp |2 exp{(-1/2)[w—Xp B 5 fw-X p 1} 1)

where, given a and a, @ = E(f| q, @, y) = (XHI, XD) 1X]')E;1\y is the generalized

1

least squares estimate of §, with variance V(Zi) = Var(f|o, o, y) = (XpHZ,, X 1 As

D)
noted in Bell and Hillmer (1992), for any given a and @ @ and V(@) may be computed by
passing y and the columns of X through the Kalman filter (which includes differencing) to

- ~

get "innovations" § and X, and then taking § = (X f() Xy, V(@) = (X’f()—l.

-~

Examining (5.1), we see its first term is proportional to a N(@, V(,:B)) density, which is

therefore p(f§| o, o ¥ C). The second term in (5.1) must then be proportional to
p(q, Q‘ebf’ C). This second term is similar to (2.6), and can be calculated by applying a

(suitably initialized) Kalman filter to W - XDB to evaluate a N(XDﬁ, _1) density for w,
and then multiplying this by the factor | XHZ XDI /2 _ = |X’X| 1/ , which is readily
calculated given X.

To perform signal extraction for the model (2.3) we must first decide how to assign
the regression effects, X/ ﬂ E X. t,@ to the seasonal and nonseasonal components. This is

discussed in Bell (1984b). Assume the regression effects are broken down so that Vi =

(8¢ +x{¢8y) + (N +x3,80) + e, =8, + N, +e,, where § = (8, f5) and
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X, = (’51 b gét)’. Then, we wish to obtain posterior means and variances of Sxt and Nxt‘

From results in Bell and Hillmer (1992), it turns out that E(Sxt| @ @, 7 51) =

E(S,| o, a, 1Y)+ }ﬁtgl’ where @ = (@i, @é)' is the GLS estimate of § for given ¢, a,

discussed above. Also, Var(Sth @ @, y) can be computed as discussed in Bell and
Hillmer (1992).

Given that E(Sxt |, @, 7 y) and Var(S, | a, @, 7, y) can be computed (the
REGCMPNT program will do this), we can compute E(Sxt | ):C) and Var(SXt | )_rc) (and

similarly for Nxt) by Monte Carlo integration as discussed in section 2.4. We again
encounter the problem of how to simulate from a posterior distribution of nonstandard

form. This problem now arises in regard to p( a, gzely, C) given by the second term in

(5.1). As discussed in section (2.4), this problem might be addressed by using an

asymptotic normal approximation to p(e, a, |y, C) (now obtained using the expression in

(5.1)), or by specialized Bayesian simulation techniques such as importance sampling.
Since the conditional posterior distribution of 4 given a and g, is exactly N(@, V(Zi)), once

we have simulated (g, a,) we can easily simulate §.

Appendix: Derivation of Results (2.12) and (2.13)

We use the decompostion (2.8): Y, = (St + ez) + Tt + I:‘;_'y = S;Y + NZ, where e;y

and 1113_7 arei.i.d. N(0, 'y&%) and N(0, (1—7)6%), respectively, and all four components of Y,
are independent of one another. We assume + - U(0,1) independently of all other random
variables in the problem.

Let E and V denote E(-| o, ay, y) and Var(-| g, @, y). (Also, E and V condition on

regression parameters (3, if these are present; see section 5.) Let §’y = (51”, very 53)’. Bell
and Hillmer (1988, equations (4.3) and (4.5)) give results for signal extraction of a

stationary component in a nonstationary time series. For signal extraction of the white
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noise series 57 these results specialize to

. 20— —1
E(el) = 70%A’EW1W V(e ) = 70% oxn =7 oIA Ty A (A.1)

where A is an (n-12-d)xn differencing matrix defined so that Ay = w, and I 18 thenxn

identity matrix. As discussed in section 2.4, the results (A.1) hold under either

assumption A of Bell (1984a) or the diffuse prior assumptions of Ansley and Kohn (1985).
Upon setting v = 1, e;y has the same stochastic structure as It (i.i.d. N(O,&%) and

independent of the other components). Thus, E(ez| y=1) = E(I,) and \7(52| y=1) =

V( Tt). Therefore, after minor manipulation, (A.1) implies that
BV A — AT TV AN — A2XH(T _2
Bleglm) =1E(L)  Vie/l7) = ¥ V(1) + +(1-7)7]. (A.2)

We can now obtain E(SZ) and then E(S, [yc). Since v - U(0,1) has mean 1/2, and

E(I ) does not depend on 7, we have that E(e7) =E [E(e7| 7] =E ['yE(I =

E (fy)E(It) = (1/2)E(It) = E(el/ ), the last equality following from (A.2) on setting
y=1/2. (E,y denotes expectation taken over the distribution of 4.) Therefore, E(S7) =

E(S + et) = E(S )+ E(el/z) (31/2) Then, letting E(-) denote expectation over the

posterior distribution for (g, a,), B(S]|y°) = BIE(S)] = E[E(S/?)] = E(s1/2|5©), which

establishes (2.12).

To obtain Var(SzIZC) requires more preliminary results. First, note that

V(s{) = Var [E(S]|7)] + E [V(S]| 7)] (4.3)

where Var,y(-) is taken over the distribution of 9. The first term in (A.3) is, using (A.2)
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Var,y[]?](gt e Var,y[f](gt) + 7E(T,)]. (A.4)

Since E(S,) and E(I,) do not depend on 1, Va.r,y[fﬂ(g ;)] = 0 and (A.4) becomes (note

Var (7) = 1/12)
Var [B(S| )] = Var (MBI )2 = (1/12)[ET )P = (1/3)[B(/ DR (A5)

Now, V(S]|7) = V(8, +&]]7) = V(S;) + 2Cov(S,, e]17) + V(e]|7), where Cov(-)

indicates a covariance conditional on @ and y. From results of Bell and Hillmer

(1988), it can be shown that Cav(gt, ezl 7) = 'yC5V(§t,Tt). Therefore, using (A.2),
V(s717) = V(8,) + 21Cov(S,,1,) + ¥*V(I,) + 7(1-7)32. For - U(0,1) note that
E(7%) = 1/3 and E[7(1—y)] = 1/6. Therefore,

B IV(STI] = V(8,) + 28, (1)COv(S, L) + B ()V(L,) + E_[(1-7)]o%
= V(8,) + 21/2)Cov(S,,T,) + (1/3)¥(T,) + (1/6)3%
= V(8,) + 265v(Se1/?) + (4/3)9(e/) - (1/3)5% + (1/6)72

using (A.2) with y = 1/2. Then

B V(871 = VS, + &) + (1/3)¥(e}/?) - (1/6)32
= V(%) + (1/3)90/?) - (1/6)7? (A.6)

1/2

since I%/ 2 and £

have the same stochastic characteristics. From (A.3), (A.5), and (A.6)

we have

V(s = (/3B + V(s + (/392 - (1/6)52 (A7)
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Letting V(-) denote variance over p(a, a,ly, C), from (2.12) and (A.7) we have that

Var(s]|y®) = V[E(S])] + E[V(S])]
= VIE(SE/)] + BV(SY/2) + (1/3)0(L/2) + (/3) B2 - 52/6)
= Var(S}/2|y%) + (1/3){Var(1}/2|y) - VB DN} + (1/3)BIEL )P - B(52/6)
= Var(s{/2[y%) + (1/3)Var(t/2|y%) + (1/3)BIEAL/ 2 - B2 1yS)/6

= Var(s}/215) + (1/3)(VarH/2|5%) + [BAL2 %) - B(o21 )6

which is (2.13).
When y=1/2,1-v9=1/2and N%/2 = Tt + I%/z. Thus, N;y = Tt + I%“'y and Szz
St + 52’ have parallel roles, and the above argument establishes the analogous results for
Nt:
B(N7|y°) = BONH/215%) = B(T, |y®) + B(1L/2|y°)

var(N]|y%) = Var(N{/?|y%) + (1/3){Var(1/2|5%) + B2y} - B2 156,
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Posterior Marginal Density Function--Variance
Figure 2.a
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Figure 3.

Marginal Posteriors: Histogram = Simulations from Exact Posterior

Dotted Line = Normal Approximation to Posterior Density
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Figure 3. (continued)

Marginal Posteriors: Histogram = Simulations from Exact Posterior

Dotted Line = Normal Approximation to Posterior Density

signal component -- log (sigma’2)

sampling error -- log (sigma*2)
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Figure 4. Seasonal Posterior Means

canonical (gamma = 0)
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Figure 5. Ratio of Posterior Means to

Signal Extraction Estimates Conditional on Parameters
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Figure 6. Posterior Variances (solid line) and

Variances Conditional on Estimated Parameters (dotted line)
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Figure 7. Posterior Variances when gamma ~ U(0, 1) (solid line) and

for the Canonical Decompostion (dotted line)
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