Two Notes on Sampling Variance Estimates from the 1984 SIPP PublicUse Files

No. 79
Barry V. Bye and Salvatore J. Gallicchio Social Security Administration

April 1989
U.S. Department of Commerce U.S. CENSUS BUREAU

Survey of Income and Program

Two Notes on Sampling Variance
Estimates from the 1984 SIPP
Public-Use Files
$8902 \quad 79$
Barry V. Bye and Salvatore J. Gallicchio
Social Security Administration

SIPP Working Paper \#79

The views expressed are the authors' and do not necessarily reflect those of the Census Bureau.

This working paper provides two contributions by Barry Bye and Sal Gallicchio of the Social Security Administration related to the estimation of variances from the SIPP publicuse files. The 1984 public-use data files of the Survey of Income and Program Participation provide pseudo stratum and pseudo primary sampling unit codes that permit direct estimates of sampling errors. The first note is a reprint of an October 1988 Social Security Bulletin article describing a methodology for calculating sampling errors directly from the SIPP public-use file. The authors applied this method to the calculation of variances for persons participating in programs administered by the Social Security Administration, and empirically show an apparent sensitivity of generalized variances (as found in the SIPP Users' Guide and Technical Documentation) to curve fitting procedures.

The second note in this working paper reports the results of comparisons of direct variance estimates from the publicuse file with variance estimates based on the original sample design (computed by Census Bureau staff). The authors conclude that the variance estimates are very much alike, suggesting some validity for the direct variance estimates using the pseudo design codes.

TABLE OF CONTENTS

Methodology 2
Balanced Half-Sample Replication 2
Variance Curve 3
Generalized Variances for Counts and Proportions 4
Variances of Medians 4
Statistical Tests for Differencesof Medians5
Results 5
Participants Aged 18 or Older. 5
Participants Under Age 18 5
Comparison with Census Generalized Variances 6
Medians 7
Conclusion 11
Appendix 12
NOTE 2 19
Introduction 20
Variance Items 20
Results 22
REFERENCES

Two Notes on Sampling Variance Estimates from the 1984 SIPP Public-Use Files

by Barry V. Bye and Salvatore J. Gallicchio*

Abstract

The Census Bureau's Survey of Income and Program Participation (SIPP) provides data that can be used to study the characteristics of Old-Age, Survivors, and Disability Insurance (OASDI) and Supplemental Security Income (SSI) program participants. Iv is important that extimates of sampling errory accompany such studies becouse the estimates may have large sampling errors due to the small number of sample cases. available for specific analyses. The generalized sampling * variances provided by the Census Bureau did not idemify * separately either progran's parricipants and, therefore, do not pertain directly to analyses of these groups. This article describes an approach to the direct computation of sampling variances for OASDI and SSI program participants. The approach uses the pseudo stratum and half-sample codes available in SIPP public use data files. A table of generalized standard errors is constructed for participants of both programs aged 18 or older. Generalized standard errors could not be computed for child beneficiaries under age 18 because of a wide variation of design effects across subpopulation estimates.

The Survey of Income and Program Participation (SIPP) provides data that can be used to sundy the sociocconomic characteristics of persons participating in programs administcred by une Sucial Security Administration (SSA): Old-Age, Survivors, and Disability Insurance (OASDI) and Supplemental Security Inconic (SSI).' Currendy, data from the initial 1984 SIPP panel are available. The 1984 pancl consists of approximately 20,000 households comprising about 54,000 individuals. Through a special algorithm developed by SSA, about 8,000 of these individuals have been identified as OASDI and SSI program participants. ${ }^{2}$ Included among them are about 4,600 reired-worker

[^0]bencficiaries, about 600 disabled-worker beneficiarics. and 700 aged, blind. or disabled SSI recipients. The remaining parcicipants are survivor, spouse, or child bencficiarics.
To provide summary SIPP data on SSA program participants to the public, a special set of tables was introduced in the Annual Statistical Supplement io the Social Security Bulletin for 1987.' The tables pertain to the civilian noninstitutionalized populatiod receiving OASDI and SSI payments. They focus on three major themes: the composition and level of income of persons receiving different types of OASDI benefits. the general characteristics of persons aged 18-64 receiving OASDI or SSI payments based on disability. and similar information about SSI recipients aged 18 or older. The unit of analysis in these tables is the individual recipient.
Many of the distributions and income levels shown in the Supplement tables are based on a relatively small

[^1]number of sample cases. Summary statistics generated from small numbers of cases can be imprecise due to large sampling errors (variances) and often suggest differences between subpopulations when no real differences exist. It is important, therefore, that estimates of sampling errors be provided along with the extimates of direct interest.
The Bureau of the Census has provided generalized variance curves for a number of quantities from the 1984 SIPP pancl. ${ }^{4}$ These curves do not identify OASDI or SSI recipients separately; therefore, the curves do not pertain directly to SSA program participants. Fortunately, provisions were made for the direct calculation of sampling variances of SIPP estimates using special codes available in the SIPP public use data files. These codes allocate the SIPP sample cases to a set of pseudo strata and pseudo primary sampling units. The codes permit direct estimates of sampling variances to be obtained by a number of methods.
The results of direct sampling variance computations for SSA program participants are presented in this article. The approach used to estimate the variances was the method of halanced half-sample replication. ${ }^{3}$ The appendix at the end of the article includes the detailed specifications for estimating sampling variances from the SIPP using the same techniques that were used for the computations presented in this article. The results of the calculations also are provided in sufficient detail to be used as a benchmark.

Sampling variances were computed for more than 300 population estimates, cross-classifying the recipients by sex, age, marital status, and type of beneficiary. A curve was fit to the estimated variances and was used to produce tables of generalized standard errors. The tables of generalized standard errors can be applied directly to the data presented in the Supplement for program participants aged 18 or older and also can be used with Oher analyses from wave 1 of the 1984 SIPP panel that pertain to SSA program participation of adults. A separate analysis for child bencficiaries under age 18 showed that estimated standard errors were strongly associated with family size. As a result, tables of generalized standard errors that would be applicable to a variety of estimates for this subpopulation could not be developed.
The generalized variance curve presented in this article yields variance estimates that are markedly different from those gencrated by curves from the Census Burcau. In part, the difference may be due to

[^2]the fact that variances of individual items estimated from the pecudo sample desiga may differ from those estimated directly from the original design. However, 2 part of the difference appears to be due to differences in the fit of the curves employed by the Census Bureau and by SSA staff. even though the functional form was the same. The SSA results appear to be more appropriate for variance estimates of OASDI and SSI program participants.

Sampling variances were also computed for some of the median income amouns shown in the Supplement. The variances and estimated sampling covariances between the medians were used to test hypotheses about differences in the size of the estimated median income amounts among various subpopulations.

Methodology

Balanced Trun-outuple Peplication

The method of balanced halfemple replication is ap approach to the extimaninecofamempling maviences for complex sample dociome ther ena be implemoned casily and has been applind to a wide veriety of statistical anizises, this method presupposes that the primary sampling units for the population have been assigned to one of L strata, and two of the units are selected with replacement from each stratum with prohability proportionate to size. Half-sample replicates of this design can be formed by selocting one of the two units from each stratum. For a sample design with L strata, there are 2^{L} such half samples. If an enimme of the statistic of invereat is made in eachorinememple end in the fill sample, then the amonge equint tifitence between half-cample and full-sample estimeses from any subset of half samples provides an estimate of the sampling variasce of the attistic. The estimatc of the sampling variance is most precise when all 2^{L} half samples are employed.
When L is large, one would like to use only a part of the 2^{L} half samples to estimate the sampling variances without loss of precision. K morse ont that special sets of half semples, cattod belanced, orthogonal sces, are. particularly good candidacs. Estimates of sampling variances from these ppecial sess are afgebrically : equivalent to those obtrined miag all half samples. Also. when the full-sample estrmate is a linear function of the half-sample estimates, the average estimate over the balanced, orthogonal set will be equal to the full-sample estimate. The minimum mumber of half samples required for a fully halanced orthogonal set is the smallest multiple of 4 which is greater than the number of strata in the sample design. For designs with many strata, this number will be much smaller than the total number of
possible half samples. Descriptions of balanced. orthogonal sets for many designs are provided in the literature. ${ }^{\text {© }}$

Once a set of half samples has been identified, estimated sampling variances are particularly easy to computc. Let $\theta_{a}(\dot{d}=1, \ldots, K)$ denote the estimator of the population parameter of interest computed from the a th half sample, and let θ be the corresponding extimate from the full sample. An estimator of the sampling variance of $\theta, V(\theta)$, based on K half samples is given by

$$
\begin{equation*}
V(\theta)=\sum_{a=1}^{K}\left(\theta_{a}-\theta\right)^{2} / K \tag{I}
\end{equation*}
$$

When θ is a linear function of the θ_{a}, so that

$$
\theta=\bar{\theta}=\sum_{a=1}^{K} \theta_{a} / K
$$

then (1) provides an unbiased estimate of the variance of θ. When θ is not linear in θ_{a} (for example, θ is a ratio, a median, a correlation coefficient), then $\theta \neq \bar{\theta}$ and the expected value of $V(\theta)$ differs from the variance of θ by an amount often well approximated by $[E(\bar{\theta}-\theta)]^{2}$. Thus if $\bar{\theta}$ is close to θ, cquation (1) will provide a good approxination of the sampling variance when θ is not lincar. ${ }^{?}$

Variance Curve

A two-parancter curve was fit to the variance estimates oblinined by the replication anculud. The curve specified the relative variance (Rv), the variance divided by the square of the estimate, as a function of the estimite.

$$
\begin{equation*}
\operatorname{Rv}(x)=a+b / x \tag{2}
\end{equation*}
$$

where
a and b are cocfficients to be estimated. x is the estinated population total, and $\operatorname{Rv}(x)$ is the estimated relative variance of x - that is,

$$
\operatorname{Rv}(x)=V(x) / x^{2} .
$$

[^3]This functional form has provided a fairly good representation of the relationship between $\operatorname{Rv}(x)$ and x in other surveys. Its use is motivated by the following considerations. ${ }^{\text {e }}$
The design effect (Deff) for a paricular estimate, x, from a complex sample design is defined as the ratio of the sampling variance of x under the design to the sampling variance that would have been obtained from a simple random sample of equal size. For a sample of size n from a population of size N , the simple random sampling variance of an estimated total, x is given by

$$
\operatorname{var}(x)=\operatorname{var}(p N)=N^{2} P Q / n
$$

where
$\mathrm{P}=\mathrm{X} / \mathrm{N}$, is the true population proportion,
X is the population total estimated by X. $Q=1-P$, and p is the sample estimate of P .

The variance of x from a complex design of the same size can be expressed as

$$
\operatorname{var}_{c}(x)=\operatorname{Deff}(\operatorname{var}(x))=\operatorname{Deff}\left(N^{2} P Q / n\right)
$$

The relative variance of x is given by

$$
\begin{align*}
\operatorname{Rv}(x) & =\operatorname{var}_{c}(x) / X^{2}=\operatorname{Deff}(Q / P n) \\
& =-\operatorname{Deff} / n+(N / n) \operatorname{Deff} / X \tag{3}
\end{align*}
$$

Equation (3) has the same form as equation (2) where $a=-D e f f / a$ and $b=(N / n) D e f f$. If it is reasonable to assume that a constant design effect exists for a particular set of estimates, then the estimated relative variances for those items may te accurately represented by a two-term curve of the form in (2) from which generalized variances can be computed.

The method used to estimate the cocfficients in (2) was an iterative procedure that minimized the function

$$
\sum_{i=1}^{1}\left[\frac{R v_{i}-\hat{R} v_{i}}{\hat{R} v_{i}^{*}}\right]^{2}
$$

where
Rv_{i} is the compured relative variance for the ith item;
$\hat{R} \mathbf{v}_{i}$ is the estimated relative variance for the ith item from the curve:

[^4]$\hat{R} v_{i}^{*}$
is a weight for the ith item. It is set equal to the computed relative variance. Rv_{i}, in the first iteration: for all subsequent iterations it is set equal to the estimated relative variance, $\hat{R} v_{i}$. from the previous itcration.
1 is the number of items to be fit.
This estimation approach gives greater weight to items with smaller estimated relative variances (and, thus, generally larger extimated totals) and has been found to work well in other surveys.'

Generalized Variances

for Counts and Proportions

Having estimated values for the coefficients in equation (2). the relative variance for a specific estimated total, x_{0}. can be obtained by substituting x_{0} into that equation. The variance of the estimated total can the obtained hy multiplying the relative variance by the square of the estimate.

$$
\begin{align*}
\hat{V}\left(x_{0}\right) & =\hat{R} v\left(x_{0}\right) x_{0}^{2} \\
& =a x_{0}^{2}+b x_{0} \tag{4}
\end{align*}
$$

Equation (4) can also be used to produce generalized estimates of variances of proportions. A proportion is the ratio of two estimated tocals, $p=x / y$, where the cases counted in the numerator are a subset of the cases counted in the denominator. In large samples, the relative variance of this type of ratio can be approximated by the following formula:

$$
\begin{gather*}
\operatorname{Rv}(p)=\operatorname{Rv}(x / y)=\operatorname{Rv}(x)-\operatorname{Rv}(y) \\
\text { or } \\
V(p)=V(x / y)=(x / y)^{2}[\operatorname{Rv}(x)-\operatorname{Rv}(y)] \tag{5}
\end{gather*}
$$

[^5]have heen found in give ton much weighe to small extimates, x, with characteristically large extimmed relative variances. Nonlinear least squarer estimates, minimizing
$$
\sum_{i=1}^{N}\left[\frac{R v_{i}-\hat{R} v_{i}}{\hat{R} v_{i}}\right]^{2}
$$
appear to give 100 much weight to observatione with large extimated totals.

Substitution of estimates from (2) into (5) provides gencralized variance extimates for proportions.

$$
\begin{equation*}
\hat{V}(p)=p^{2}[h(1 / x-1 / y)]=(h / y)(p)(1-p) \tag{6}
\end{equation*}
$$

Tables of gencralized standard errors for estimated totals are often produced from cquation (4) by computing and displaying the square root of the estimated variances for a set of predetermined values of x. Similarly, a table of standard errors for estimated proportions can be computed from (6). This table will be two dimensional with the size of the base of the percent on one dimension and the estimated proportion on the other.

Varinmenansinalinmex

The balanced half-sample replication approach was used to estimate standard errors for the extimated medians in table 17 of the 1987 Supplement. That table presents median OASDI income, median total income. and the median of the ratio of OASDI income to total income for several bencficiary groups, cross-classified by \mathbf{a} number of factors.
In this article, the medians were estimated from distributions of the variables of interest using the following formula: ${ }^{10}$

$$
M=L_{j}+\left[\frac{S_{50}-S_{j}}{N_{j}}\right] w_{j}
$$

where
j indexes the interval containing the 50th percentile:
$L_{j} \quad$ is the lower limit of the jeh interval;
is the estimated population at the 50th percentile: is the estimated population with valucs below the jth interval:
$\mathrm{N}_{\mathbf{j}}$ is the estimated population in the jth interval: and
$\mathbf{W}_{\mathbf{j}}$ is the width of the jth interval.
An interval width of $\$ 25$ was used for the OASDI income distribution. Intervals of $\$ \$ 0$ or $\$ 100$ were employed for the total income distribution, the latter used to capture the larger monthly benefit amounts. An interval of .05 was used for the income ratio.

The sampling variance of M was obtained by estimating M in each half sample and then applying

[^6]equation (1). This approach was repeated for each of the three median amounts and for each subpopulation.

Statistical Tests for Differences ${ }^{\circ} \mathrm{M} \mathrm{M}^{n}$ mob

Statistical tests were made on the variation in medians across the catcgories of a particular variable (sex, age, and size of fanily, for example) within a particular beneficiary group. The test approach follows that developad by Grizzle. Starmer, and Koch. "Let $M_{1}, M_{2}, \ldots, M_{k}$ be a set of estimated medians for k categories of the variable. Then a $\chi^{2}-$ type test statistic for the hypothesis $H_{0}: M_{1}=M_{2}=\ldots=M_{k}$ can be constructed under the assumptions that the M have. jointly, a multivariate normal distribution and that a consistent estimate of the sampling covariance matrix is available. ${ }^{12}$
The sampling covariance matrix is obtained through the balanced half-sample method by a computation similar to that of equation (1). The (i, j)h element of the matrix is given by

$$
\sum^{K}\left[M_{a}^{(i)}-M^{(i)}\right]\left[M_{a}^{(j)}-M^{(j)}\right] / K
$$

where
$\mathrm{M}^{(r)}$ is the estinate of de median for the reh category from tic entire population,
$\mathrm{M}_{\alpha}^{(r)}$ is the estimate of the median for the rth category from the a th half sample, and
$\mathrm{K} \quad$ is the number of half samples.
Amoug retired-worker bencticiarics, in two cases, unc set of categories consists of a cross-classification of two factors: scx by age and sex by marital staous. In these cascs, a sex effect, an age (or narital stanus) effect and a combined effect were tested. For disabled-worker beneficiaries, the type-of-family categories refer to both marital status and presence of minor children. In this case, the medians for married versus not married and the medians for marricd with minor children versus married with no minor children were tested.

[^7]
Results

Participants Aged 18 or Older

Appendix table I presents the population estimates. standard errors, and relative variances for each of the items described above. There were 326 subpopulation estimates based on more than 1 sample case. The estimates ranged from a low of about 7,000 based on 2 sample cases to a high of $\mathbf{3 8}$ million based on 7,943 sample cases that represent the entire OASDI and SSI recipient population. ${ }^{13}$ The variance curve that was dervied from the items has coefficients ${ }^{14}$

$$
\begin{aligned}
& a=.0007 \\
& b=5217 .
\end{aligned}
$$

Tables of generalized standard errors based on this curve follow. ${ }^{13}$ For the estimated totals of a specific size, table 1 gives one standard error of the estimate. Table 2 gives one standard error for estimated proportions with bases of various sizes.

Participants Under Age 18

When constructing estimates of family characteristics for children, one would expect large design effects in the estimated sampling errors. All children will tend to report (or have coded for theni) the same fanily data, thus reducing the effective number of independent observations by the average number of children per family. Because OASDI benefits awarded to minor children tend to be divided anong all the children in a beneficiary fanily, the strong clustering effects that one finds for child-related estinates are expected to appear for beneficiary children as well.
To investigate the sampling variances for children, a set of estimates was constructed by cross-classifying

[^8]$$
D_{e f f}=b(N / N)=(5217)(7943 / 34160810)=1.2 .
$$

[^9]family size, family income, scx, and race. As expected, a variance curve fit to all of the items exhibited a systematic lack of fit, overestimating the computed variances for smaller families and underestimating the variances for larger familics. Fitting separate curves by family size resulted in the following set of \mathbf{a} and \mathbf{b} parameters:

	Parameter	
Frunily mixe	2	b
1.3	. 0034	4922.
4.	. 0127	5849.
5 or more......	. 0199	8733.

The increasing valucs of both the a and b parameters indicate that substantial increases in sampling variances are to be expected, for an estimate of fixed size, as family size increases.

Table 1.-Standard errors for estimated population totals

Estimate	Stenderd error
25,000 .	11,436
50,000 .	- 16,202
75,000 .	19,878
100,000 .	22,994
250,000 .	36,738
500,000................................. . .	52,842
750,000 .	65,786
1,000,000 .	77,176
2,500,000 .	132,954
5,000,000 .	211,284
7,500,000 .	284.417
10,000,000 .	353,574
25,000,000 .	771,177
50,000,000 .	1,453,403

These results imply that the sampling variance for an estimated subpopulation of child heneficiaries under age 18 will depend largely on the family size composition of the subpopulation. A set of child-beneficiary estimates would not be likely to exhibit a constant design effect: and therefore, it is unlikely that a two-term curve of the kind described above would provide a good approximation to the extimated sampling variances for the set. Accordingly, no generalized variances for child beneficiaries are presented. There appears to be no substitute for direct variance calculations in this case.

Comparison with Census Generalized Variances

The STPP Unar's Grida pmopas parmers for tam

Table 3 shows estimated standard errors from the SSA curve and Census curve 1 for a range of estimates. ${ }^{17}$ For estimates less than 10 million, the Census estimates are 1.20 to $\mathbf{1 . 7 5}$ times larger than those from the SSA curve. Some of this difference could be due to differences in computational schemes for the direct
${ }^{16}$ MTPP User's Guide, op. dht., page 7-5.
"The parameters from Census curve 1 are:
$a=-.0000942$, and $b=16059$.

Table 2. - Standard errors for estimated percents

Buen of percent	Percent											
	1 or 99	2 or 98	50095	8 or 92	10 cr 90	15 or 85	20 or 80	25 or 75	30 or 70	35 or 65	40 or 60	50
25,000..........	4.54	6.39	9.95	12.39	13.70	16.31	18.27	19.77	20.93	21.78	22.37	22.83
50,000	3.21	4.52	7.04	8.76	9.69	11.53	12.92	13.98	14.80	15.40	15.02	16.14
75,000	2.62	3.69	5.73	7.15	7.91	9.41	10.55	11.42	12.08	12.58	12.92	13.18
100,000...	2.27	3.20	4.98	6.19	6.85	8.15	9.13	9.89	10.46	10.89	11.19	11.42
250,000.	1.44	2.02	3.15	3.92	4.33	5.16	5.78	6.25	6.62	6.89	7.07	7.22
500,000	1.02	1.43	2.23	2.77	3.06	3.65	4.00	4.42	4.68	4.87	5.00	5.11
750,000 83	1.17	1.82	2.26	2.50	2.98	3.33	3.61	3.82	3.98	4.08	4.17
1,000,000 72	1.01	1.57	1.96	2.17	2.58	2.89	3.13	3.31	3.44	3.54	3.61
2,500,000 45	. 64	1.00	1.24	1.37	1.63	1.83	1.98	2.09	2.18	2.24	2.20
5,000,000 32	. 45	. 70	. 88	. 97	1.15	1.29	1.40	1.48	1.54	1.58	1.61
7,500,000 26	. 37	. 57	. 72	. 79	. 94	1.05	1.14	1.21	1.26	1.29	1.32
10,000,000 23	. 32	. 50	. 62	. 68	. 82	. 91	. 99	1.05	1.09	1.12	1.14
25,000,000 14	. 20	. 31	. 39	. 43	. 52	. 58	. 63	. 66	. 69	. 71	. 72
50,000,000 10	. 14	. 22	. 28	. 31	. 36	.41	. 44	. 47	. 49	. 50	. 51

Table 3.-Comparison of gencralized standard errors for estinated totals

Estimato	SSA	Census curve 1	Percent
25,000.	11440	20035	175.1
50,000.	16206	28332	174.8
75,000.	19882	34697	174.5
100,000.	22997	40062	174.2
250,000	36731	63316	172.4
50,0000.	52805	89476	169.4
750,000.	65708	109505	166.7
100,000.	77051	126352	164.0
250,000.	132446	198894	150.2
500,000.	209962	279177	133.0
750,000..	282181	339328	120.3
10,000,000.	352375	388806	110.3
25,000,000.	761853	585320	76.8

variance estinates on which the curves are based. Boch the variance estimators and the assumed sample design are different. ${ }^{14}$
Much of the difference in the curves, however, appears to be atuributable to differences in curve-fitting strategies. The Census curve is based on 36 estimated totals for persons aged 16 or older involving receipt of cash and noncash benefits and labor-force activity. Thiricen of the 36 items are estimates of the Hispanic population with selected characteristics. Unpublished Census Bureau data suggest that variances from curve 1 for population totals of less than 500,000 are substantially overestimated. ${ }^{10}$ This is not surprising because only several observations are in this range anong the 36 items and they are given little weight by the kind of curve-fiting algorithm described above. ${ }^{20}$ As indicated in the appendix, the set of items from which the SSA curve was derived contains a large number of snall estimates. The SSA curve appcars to fit the observations well for small estimated totals.
The reasons for differences between Census Bureau and SSA curves for larger estimates are more difficult to discem. There is some indication that the design effects for tic Hispanic population estimates are larger than

[^10]those for the corresponding estimates for all races combined, raising the overall level of the Census curve. It is also possible that the design effects for adult OASDI and SSI program participants are generally smaller than the effects for the Census items. Less clustering may occur among OASDI and SSI adult recipients in families and households, compared with recipients in ocher transfer programs. The small number of items on which the Census curve is based makes a more detailed analysis difficult. At this point. the SSA curve appears to be much preferred for OASDI and SSI program participation estimates.

Medians

The standard errors for the medians in table 17 of the Annual Statistical Supplement are shown in tuble 4. With the exception of child bencficiaries, the variances of the estimated medians appear to be quite small. The sizes of the estimated standard errors rarely exceed 10 percent of the corresponding medians and are often well under 5 percent. The median income amounts for families of child beneficiaries show larger standard errors than, for example, similar estimates for families of disabled-worker beneficiaries even when the unweighted case counts are about the sanne. The larger estimated standard errors are probably the result of the clustering effects for child beneficiaries discussed above.
The generally small standard errors are also reflected in the test statistics for the hypotheses concerning differences of medians. For each set of categories and each type of median, the differences between medians across categories were statstically significant at the .05 level in most cases. When contrasts wcre significant, the significance levels tended to be much smaller than .05 . usually less than 0001 .
The contrasss that were not significant at the . 05 level are described at the end of table 4. The tuble identifies the specific comparisons and provides the value of the lest statistic, the degrees of freedom, and the p-value. The following examples demonstrate how the test results can be interpreted.
The statistical tests indicated no tworway interaction existed between sex and age regarding the ratio of OASDI bencfits to total income for retired-worker beneficiarics. Differences in median ratios between age groups tended to be about the same for both men and women. The differences between median ratios for men by age group are 13,9 , and 0 . The corresponding differences for women are very similar (12, 7, and 2). The statistical tests did show significant sex differences and significant age differences. The patuern of median ratios, therefore, can be described by adding sex and age effects without the need to adjust for particular sexage combinations.

Table 4.-Standard errors for table 17, Annual Statistical Supplement to the Social Security Bulletin. 1987

Chameteristic	OASDI henefin		Total income		Ratio*	
	Median	Standerd error	Median	Standard error	Median	Standard error
	Retired workers					
Total. .	577	10	1210	23	53	1
Men.	633	10	1300	30	51	1
Women	515	7	1096	29	57	1
Sex and age of heneficiary:'						
62-64	502	11	1442	54	34	2
$65-69$.	672	18	1444	51	47	2
$70.74 . .$.	632	13	1282	40	56	2
75 or older .	611	16	1137	35	56	1
Women624						
62-64 .	582	39	1481	76	41	2
65-69 .	569	19	1216	28	53	2
7074 .	531	12	1072	42	60	2
75 or older. .	469	9	847	45	62	2
Sex and marital matus:						
Men-						
Married .	897	9	1417	26	50	1
Whdoned .	456	13	946	64	49	2
Divorced .	451	33	759	93	64	4
Nover married.	476	34	893	79	56	3
Women-						
Married .	763	. 8	1487	38	52	2
Whowed .	437	6	760	28	61	2
Divored \qquad	411	13	778	57	58	4
Nover married.	452	20	935	115	58	3
Size of family:						
1 person. .	419	6	629	19	65	1
2 persons...........	713	9	1351	28	54	1
3 persons or more.	669	29	2261	74	30	1
Monthly family income:						
Leen than SS00.	326	7	396	6	91	1
\$500-5999 .	520	5	743	7	74	1
\$1,000-51,499 .	713	15	1225	7	57	1
\$1,500-51,999 .	718	15	1722	14	41	1
\$2,000-52,499	793	13	2203	13	35	1
\$2,500-52,999 .	710	41	2776	20	25	1
\$3,000 or more .	764	29	3891	83	17	1
Family source of income: Earmines ${ }^{2}$ -						
Yes..	572	15	1946	36	31	1
No.............................. . .	580	13	1015	29	63	1
Asets-						
Yes..	622	9	1337	26	SO	1
No..............	428	11	604	24	75	2
Meantered cash benefits-						
Yes...... .	335	16	594	56	58	1
No...........	600	9	1247	20	53	1
No.	651	11	1461	23	46	
	497	7	795	24	71	2
	Dismbled workers					
	522	14	1162	47	49	2
Mon' .	566	12	1175	57	50	3
Women	419	26	1137	59	46	4
Asp of bemeficiary: ${ }^{4}$						
18-54.	544	16	1240	83	. 45	4
SS64........	501	18	1127	53	50	3

See focmover and of coble.

Table 4.-Standard errors for table 17, Annual Statistical Supplement to the Social Security Bulletin, 1987-Continued

Characterlstic	OASDI benelit		Toul income		Ratio*	
	Median	Standerd error	Median	Standard error	Median	Standard error
	Disabled workers-cont.					
Size of family:						
1 person..	392	26	490	39	79	5
2 persons..........	547	21	1202	51	44	3
3 persons or more...	597	25	1625	162	39	3
Type of family:						
Marriod.....	578	15	1367	97	44	2
With minor childrea.	713	48	1284	125	54	6
No minor children.	547	17	1427	115	41	3
Unmarriod. . .	434	21	833	50	55	5
Monthly fanily income:						
Less than $51,000 .$.	437	19	620	42	80	3
\$1,000-\$1,999...	616	20	1369	49	44	2
\$2,000 ¢ more . .	563	43	2664	113	18	1
Family scurce of income: Eamings ${ }^{\circ}$						
Yes....	516	17	1831	69	31	2
No .	528	20	803	50	70	3
Ascots-						
Yes.	566	23	1512	90	41	2
No..............	483	16	822	53	63	4
Means-lested cash benefits-						
	407	34	858	67	52	4
Yos No \qquad	477	14	884	48	62	5
	Nondisabled widows					
Total..	379	8	657	33	59	2
Age of benciliciary:'						
$60-69 \ldots . .$.	363	12	834	43	47	3
70 or obler..	386	9	579	25	68	3
Size of family:						
1 person....	363	10	471	18	72	2
2 persuns.........	458	19	1227	82	41	5
3 persuns ur more....	373	15	2104	210	17	
Monutly family income:						
Less than $\$ 1,000 . .$.	361	9	474	10	79	2
\$1,000-\$1,949...	43	21	1304	36	32	2
\$2,000 ar more ...	401	16	2939	84	13	
Famity murce of income:						
No..............	385	10	49	20	75	
Yes..	403	7	82	38 15	5	
	316	11	40	15	8	
Means-ested cash benefits-						
No	396	7	70	34	59	
Oher cash income-						
Yes....	406	16	1033	69	39	
No............	369	8	52	21	7	

Table 4.-Standard errors for table 17, Annual Statistical Supplement in the Social Security Bulletin. 1987-Continued

Chancteristic	OASDI henefit		Total insome		Ramio*							
	Median	Standard error	Median	Standard error	Median	Standard error						
	Minar children											
Total.	604	41	1463	114	43	3						
Size of framily: ${ }^{\circ}$												
1 or 2 persons.	392	61	981	132	43	11						
3 persons..	622	77	1437	155	50	7 10						
4 persons..	674543	69101	1578	252	46	10						
5 persons..........			18001345	198213	3045	5						
6 persons or moro..	539	90										
Type of family:"												
Wich humbend/wire head.	601615	42	1828	112	3249	5						
With singlo head. .			1181	70								
Monthly family ineome:												
Lemethan $\$ 1,000$.	464	3348	6741449	57	8146	53						
\$1,000-\$1,999..	700											
\$2,000 or more.	675	89	2928	189	20	3						
Family murse of inemme: Earnings-												
Yes..	519728	3461	1829	$\begin{aligned} & 78 \\ & 48 \end{aligned}$	$\begin{aligned} & 31 \\ & 86 \end{aligned}$	2						
No ${ }_{\text {ii }} \ldots$			958									
Asment ${ }^{\text {a }}$												
Yı..	$\begin{aligned} & 655 \\ & 525 \end{aligned}$	5343	1999	9966	3070	3						
No.................			973			5						
Moans-reated cash benefits												
Ya.....	$\begin{aligned} & 454 \\ & 657 \end{aligned}$	42	966	150	56	8						
No.................		35	1713	133	39	3						
Ohber cath income Yes.	$\begin{aligned} & 645 \\ & 541 \end{aligned}$	$\begin{aligned} & 56 \\ & 50 \end{aligned}$	$\begin{aligned} & 1911 \\ & 1251 \end{aligned}$									
No..............				66 86	34 49	3						

- OASDI divided by moel: tro decimale implied.

Finding
'No mo-way intersction in recio
No diflerence in OASDI henefu leval
'No difference in toud income
No dififerense in recio
No diflerence in well incouve
No differcoce in acel income for married with
No differcace in raio for married with minor/with no miner
No difiterume in OASDI berefin level
No diflerence in OASDI benefru leval
No diflermee in OASDI benefin level
'No difleremere in raio
No differuse in ratio
"No difremere in OASDI benefin leval
${ }^{12}$ No diflereme in OASD benefin level
${ }^{1} \mathrm{No}$ difleremee in retio
No differemes in OASDI benef

CHieO2	d.f.	pralue
1.25	3	.74
.50	1	.70
.27	1	.60
.90	1	.34
1.56	1	.21
.69	1	.41
3.58	1	.06
.22	1	.64
2.60	1	.11
1.54	1	.22
.02	1	.09
7.26	1	.12
.02	1	.08
3.02	1	.08
3.73	1	.05
1.56		.21

In coorrast to the sex-age findings for recired workers. the sex by marital stanus tests showed that a two-way interaction was required to describe the paterns of median ratios. Again, differences were seen among the medians for each factor separactly, but me patiern of marital status differences was not the same for men apd women. Note, for example, that the difference in median ratios for married men and widowed men, -1 . appears to be quite differeat from the differeace between the medians of married and widowed women, +9 . Among the other sequential contrasts differences were also evident. This pattern of values can not be explained by additive effects alone.
Sex and age contrasts for disabled-worker beneficiaries present situations in which a significant difference existed among median OASDI benefits but not among total incomes or ratios. This apparent inconsistency could be duc to chance alone. However, there could be another explanation. The median ratio is nor. algebraically, the same quantiry as the ratio of the medians. It is possible that the ratios of the medians in the population are different, as suggested by the data presented here, but that the median ratios in the population are the same.

The remaining findings of differences in medians generally indicate that a contrast between ooe pair of medians was not significant. The one exception is the contrast of family size ratios for families with minor children. Because there were five family size categorics. four contrasts were involved in the comparison.

Conclusion

This article described a mechodology for calculating sampling crrors directly from unc SIPP public use file and applicd this mechod to the calculation of variances for persons participating in SSA-adnigivesed programs. The mectuodology is presconed in muticiem dotail so that researchers can apply the same methods to their specific analyses. Since the replication variance estimation approach is not difficult to implencent and facilitates a wide range of hypothesis resting techniques, it is recommended that direct variance calculations be used. This position is further supported by the apparent sensitivity of generalized variances to curve-fitting
procedures. Estimating variances directly will also permit variances to be obtained from subsequent waves of the 1984 SIPP panel. Presumably, estimated standard errors will be higher for later waves of the panel due to the accumulated sample attrition at each wave.

For those who cannot compute variances directly. standard error tables have been provided for OASDI and SSI program participants aged 18 or older from wave 1 of the 1984 panel. The standard errors pertain directly to the SIPP tables in the Annual Statistical Supplement to the Social Security Bulletin for 1987. The standard error tables can also be used for other analyses of program participants from wave 1 . Generalized standard errors for participants under age 18 could not be developed.
Several matters need further invenignion io raise confidence in direct sampling error estimates from the public use files. A comparison of variance estimates from the pseudo design and from the actual sample design will show whether the pseudo design yields estimates that are, on average, smaliter than those obtained when the original design is used A comparison of the size of test statistics of the type that are used in this articie also would be useful. These statistics require extimates of sampling variances and covariances, and it would be helpfil to know if the pseudo design yields ressonable estimates of covariance as well as variance. Finally, licle is known about the raw sample sizes required before normality is achieved in the sampling: distribution of the various statistics presented. If for small samples the sampling distribution of counts. proporions, or medinas is markedly different from normal, it might be misteading to form sonfidence * incervals or to perform mavimical nowe avemaniag a normal distribution (thet ina, maming symmuctic intervals of 1 smadnod epror about ite estimate yields a 68 -percent confidence imerval, 2 standitrd errurs provides a 95 -perceat confidence intervat). The true confidence intervals may be larger or smaller than those of a normal distribution and may not be symmetric about the estimate. All of these auacers are important if the Survey of Income and Program Participation is to be used for making inferences about the population under SSA-administered prograns and not just for descriptive reporting.

Appendix: Detailed Sampling Variance Specifications

Assignment of Half-Sample Codes

Each person in the sample in the 1984 SIPP public use file had been assigned a pseudo-stratum code and a meendo primary sampling unit (PSU) code within each pscudo stratum. ${ }^{1}$ Generally, a self-representing (SR) PSU from the original design was associated with two non-self-representing (NSR) PSUs to form a pseudo stratum. Segments of the SR PSU were assigned to one of the two psecuio PSUs at random; each of the NSR PSUs was assigned, in its entirety, to one or the other of the pseudo units. In some cases, two SR PSUs or four NSR PSUs were grouped to form a pseudo stratum. The assignment resulted in the formation of 71 pseudo strata with 2 pscudo units in each stratum. The original PSU codes were withheld from the public use file to prevent access to small geographic areas where a risk of disclosure of individual identities might be possible.
For a design with 71 strata with two units each, the smallest number of half samples that can achieve full orthogonal balance is 72 . The set of balanced half samples used in the variance computations is shown in chart $\mathrm{I}^{2}{ }^{2}$ The array represents a string of 72 is and 0 s for each of the 71 pseudo strata. For a SIPP sample case in pseudo-stratum δ and pseudo-unit 1, the string in the δ th row of the array was attached to the record. For a SIPP sample case in psevio-stratum δ and psendo-unit 2. the complement (that is, $1 s$ replaced by Os , and vice versa) of the string in the δ th row of the array was attached. These strings effectively assign each SIPP case to 36 of the 72 half samples. A "1" in theath position in the string indicates that the case is to be included in thea th half sample: a " 0 " means that the case is not to be included.

Item Specification for Generalized Variances

Replication variances were obtained for estimated population totals of OASDI and SSI recipients. Recipiency status was determined by the responses for September 1983. Estimated population totals were obtained in each half sample by multiplying the sum of the weights by 2 . 3 The recipients were cross-classified

[^11]by age. sex. marital status, and type of recipient (OASDI only, SSI only, and concurrent OASDI and SSI). This cross-classification yielded 326 distinct detailod and subtrotal cells with more than one case.
The September 1983, OASDI and SSI recipient universe consists of those persons in the sample who meet the following test:4
\[

$$
\begin{gathered}
{[(\text { IOIAMT-** }>0 \text { or IO3AMT-* }>0)} \\
(\text { or } \\
\text { (SOCSEC-** }=1 \text { and AGE-* }<18) \text {] } \\
\text { and } \\
\text { [FNLWGT-* }>0 \text {] }
\end{gathered}
$$
\]

where

10IAMT-*
IO3AMT-*
SOCSEC-*
AGE-* is age in September 1983; and
FNLWGT-*
refers to the OASDI benefit amount: refers to the SSI amount:
is the OASDI indicator:
is the case weight.

Each variabie is selected for September based on the rotation group of the sample case shown below:

The cross-classifying variables (type of bencfit, age. sex, and marital status) were constructed as follows:

Afe (AGE-๑):	
Under 18	$65-69$
$18-24$	$70-74$
$25-34$	$75-84$
$35-44$	85 or older
$55-64$	

Sex:
Nale, Female
Type of hemefit:
(IOIAMT-*>0 and IO3AMT-* $=0$)
OASDI mily.

$$
\text { (SOCSEC. }{ }^{\text {or }}=1 \text { and AGE•• < } 18 \text {) }
$$

sst only.
(COIAMT-* $=0$ and KOAMT $-^{\bullet}>0$)
OASDI and SSI
(IOIAMT-*>0 and K3AMT-*>0)

Table I presents the estinated sampling variances for the 326 items described above.

[^12]Table I.-Variance estimates for OASDI and SSI participants under SSA-administered programs

Ase	Sex	Marital status'	Unweighed count	Estimate	Slandard error	Relative variance

All program participans							
Toul	-	Toul	Total	7943	34160810.	883445.	. 0006688
Total		Toul	NM	1147	4938770.	207858.	. 0017713
Toul		Tocal	S	497	2291088.	99936.	. 0019027
Tocal		Toal	W	2307	9917379.	305171.	.0009469
Total		Toul	M	3992	17013620.	568181.	. 0011153

OASDI only						
Toul	Toul	Toul	7242	31012390.	814853.	.0006904
Toal	Tocal	NM	973	4148071.	191974.	. 0021419
Toul	Tocal	S	358	1634194.	91508.	. 0031356
Toal	Toul	W	2078	8966302.	277238.	. 0009560
Toul	Toual	M	3833	16263820.	556481.	. 0011707
<18	Male	NM	252	1051521.	89736.	
<18	Female	NM	256	1064085.	87690.	. 0067913
<18	Toal	NM	508	2115606.	146801.	. 0048149
18-24	Male	S	1	$46 .$	S646.	1.0000000
18-24	Male	NM	30	139714.	27131.	. 0377100
18-24	Male	Toul	31	145360.	28694.	. 0389663
18-24	Femalo	W	3	10502.	6079.	. 3350419
18-24	Female	NM	26	112174.	19133.	. 0290918
18-24	Female	Toul	29	122676.	20793.	. 0287286
18-24	Toul	NM	56	251888.	34246.	. 0184839
18-24	Tal	Toul	60	268036.	36677.	. 0187243
25.34	Malo	M	6	29036.	12232.	. 1768577
25-34	Male	W	1	4053.	4053.	1.0000000
25-34	Male	S	3	31835.	24101.	. 5731619
25.34	Male	NM	16	89563.	23121.	. 0666412
25-34	Malo	Tocal	26	154536.	33560.	. 0471601
25-34	Fermale	M	10	47962.	16933.	. 1246478
$25-34$	Fomale	W	16	71050.	16858.	. 0562995
25-34	Female	S	1	4030.	4030.	1.0000000
25.34	Female	NM	12	54016.	19449.	. 1296431
$25-34$	Female	Toul	39	177057.	31562.	$.0317771$
25.34	Toul	M	16	77048.	21730.	. 0795461
25.34	Toul	W	17	75103.	17339.	. 0532992
25.34	Toal	S	4	35865.	24436.	. 4642159
25.34	Tual	NM	28	143579.	32466.	. 0511296
25.34	Toal	Tocal	65	331593.	42328.	. 0162944
35-44	Male	M	14	61855.	15321.	. 0613515
35-44	Male	W	1	4392.	4392.	1.000000
35-44	Male	S	2	8136.	8136.	1.0000000
35-44	Malo	NM	9	47179.	16125.	. 1168245
35-44	Male	Toul	26	121560.	21518.	. 0313335
35-44	Female	M	31	136991.	26813.	. 0383101
35-44	Femalo	W	25	105580.	19971.	. 0357782
35-44	Female	S	11	49041.	15943.	. 1056871
35-44	Female	NM	7	33957.	12997.	. 1464932
35-44	Fermale	Tocal	74	325569.	43557.	. 0178995
35-4	Total	M	45	198846.	30938.	. 0242071
35-44	Toul	W	26	109972.	20448.	. 0345724
35-44	Toal	S	13	57176.	17899.	. 0979968
35-44	Toal	NM	16	81136.	20711.	. 0651601
35-44	Toual	Toul	100	447129.	49484.	. 0122478
45-54	Male	M	52	220557.	28133.	. 0162699
45-54	Male	W	2	7013.	4964.	.5011174
45-54	Male	S	17	75694.	18987.	$0629197 .$
45-54	Male	NM	12	58138.	17104.	.0865495
45-54	Malo	Toual	83	361401.	34312.	. 0090141
45-54	Female	M	50	210502.	31456.	. 0222298
45-54	Female	W	24	102704.	25139.	.0599145
45-54	Female	S	11	46439.	14031.	.0912957
45-54	Female	NM	6	26079.	10685.	.1678766
45-54	Fomale	Toual	91	385723.	37089.	0092456
45-54	Toul	M	102	431059.	48038.	$0124192 .$
45-54	Total	W	26	109717.	26180.	$0569375 .$
45-54	Toal	S	13	122132.	23911.	$0383306 .$
45-54	Toul	NM	23	84217.	20167.	. 0573444

Table I.-Variance estimates for OASDI and SSI participants under SSA-administered programs-Continued

Ase	Sex	Marital status'	Urmeinhed emunt	Estimale	Standard error	Relintive variance
OASDI only -come.						
4S-54	Total	Total	174	747124.	54047.	
55-64	Male	M	342	$1488914 .$	$99257 .$	$.004441$
55-64	Malo	W	26	123374.	24778.	.037251
5564	Male	S	36	165105.	29969.	. 0329479
S5-64	Malo	NM	17	82124.	21419.	. 0880217
55-64	Malo	Tonl	421	1864517.	113389.	. 0036984
S5-64	Femalo	M	351	1478573.	93865.	. 0040301
55-64	Fomale	W	202	856463.	63475.	. 0054927
55.64	Fomale	S	41	174779.	$2: 070$.	$.0257925$
55-64	Fomale	NM	24	103215.	22004.	. 0454497
5S.64	Fomale	Toul	618	2613029.	120423.	. 0081239
$35-64$	Total	M	693	2967487.	165997.	$.0031291$
$55-64$	Toal	W	228	984837.	69234.	$.0041003$
3564	Total	S	77	339484.	46306.	. 0189647
55.64	Toal	NM	60	185339.	32915.	. 0315395
5564	Total	Total	1039	4477546.	$197917 .$	$.0019538$
65-69	Male	M	652	2771693.	145189.	$0027301 .$
$65-69$	Malo	W	38	173900.	31586.	$.0329904$
$\begin{aligned} & 65-69 \\ & 6560 \end{aligned}$	Male	S	42	197829.	30920.	$.024292$
$\begin{aligned} & 65-69 \\ & 65-69 \end{aligned}$	Male	NM	39	iths09.	28946.	$.0262943$
$\begin{aligned} & 65-69 \\ & 65-69 \end{aligned}$	Male	Trual	771	3324931. 2445450	158555.	.0022686
$65-69$ $65-69$	Female	M	603 328	2445450. 1301091.	124833. 63726.	$\begin{aligned} & .0026058 \\ & .0023989 \end{aligned}$
65-69	Female	5	68	269385.	34190.	. 0161081
65-69	Fomale	NM	53	210263.	35869.	. 0291007
65-69	Fomale	Total	1052	4226188.	146044.	. 0011948
65.69	Total	'M	1255	5224143.	228339.	.0019104
$65-69$	Toll	W	366	1474991.	73343.	$.0024725$
$\begin{aligned} & 6569 \\ & 65-69 \end{aligned}$	Total	S	110	$467214 .$	$48524 .$.0107864
65-69	Total	NM	92	388772.	41663.	.0114844
$65-69$	Total	Toual	1823	$7555119 .$	246535.	$.0010648$
70.74	Male	M	526	$2211887 .$	125904.	$.0032400$
70.74	Male	W	69	303203.	45817.	$.0220994$
70.74 $70-74$	Malo	S	28	121108.	23433.	. 0374377
$70-74$ $70-74$	Male	NM	27	125257.	24585.	0385257
	Male	Toul M	650	2766455.	139422.	. 0025399
70-74	Fermale	M	377 379	1634980. 1626694.	104934. 88937.	. 0041192
70.74	Fernale	S	37	162834.	31180.	. 0366651
$\begin{aligned} & 70-74 \\ & 70-74 \end{aligned}$	Femalo	NM	46	209242.	34337.	$.0269301$
$\begin{aligned} & 70.74 \\ & 70.74 \end{aligned}$	Female Total	Toral	839	$3633749 .$	178731. 199390	$.0024193$ 002683
$\begin{aligned} & 70-74 \\ & 70-74 \end{aligned}$	Total Total	$\underset{\mathbf{W}}{\mathbf{M}}$	903	3846867. 1934897.	199390. 107103	.0026R65 0030640
70-74	Total	W	448	1934897. 283942.	107103. 37106.	. 0030640
70.74	Toul	NM	73	334499.	47244.	. 0199480
70.74	Total	Toral	1489	6400204.	267776.	. 0017505
$75-84$	Male	M	468	1988365.	125679.	0039952
$\begin{aligned} & 75-84 \\ & 75-84 \end{aligned}$	Male	W	116	510172.	$61289 .$.0144324 0428297
$\begin{aligned} & 75-84 \\ & 75-84 \end{aligned}$	Male	NM	28 22	116411.	24034.	. 0426257
75-84	Male	NM	22 634	95184. 2710130.	15865. 150989.	.027769 .0031039
$75-84$	Female	M	269	1191177.	84073.	.0049815
$75-84$	Female Femple	W	585	2679240.	132442.	. 00224436
75-84	Female Female	NM	36	160437.	28486.	. 0315242
75-84	Femmale	NM	88888	397776. 4429629.	47085. 174050.	.0140117 .0015446
$\begin{aligned} & 75-84 \\ & 75-84 \end{aligned}$	Total Tolal	\mathbf{M} \mathbf{W}	737	3179542.	190234.	$\begin{array}{r} .0035797 \\ .0023299 \end{array}$
$\begin{aligned} & 75-84 \\ & 75-84 \end{aligned}$	Total	W \mathbf{S}	701	3189411. 276848.	153949. 36552.	.0023299 .0174319
75-84	Toual	NM	110	492959.	S0716.	.0105844
75-84	Toul	Total	1612	7138760.	283838.	. 0015809
$85+$ $85+$	Male	M	57	246861.	32533.	. 0173675
$\begin{aligned} & 85+ \\ & 85+ \end{aligned}$	Male	W	44	242744.	42750.	.0310149
$85+$ $85+$	Male	NM	4	18399.	9514.	. 2673954
$85+$	Male	NM	111	35978. 543980.	15424. 58333.	.1838019 .0114989
$85+$	Femalo	M	25	91970.	17962.	.0381411
$85+$	Femalo	W	219	834132.	63100.	.0057225

Table I.-Variance estimates for OASDI and SSI parcicipants under SSA-administered programs-Continued

Ag	Sox	Marial semus'	Unweighod caum	Eximene	Standerd error	Relmive varince

Table I.-Variance estimatcs for OASDI and SSI participants under SSA-administered programs-Continued

Ase	Sen	Marital starus'	Uawoiphed coume	Enimate	Stendiad error	Relative variance
SSt only-eont.						
55-64	Femmle	Toul	37	165529.	26792.	. 0258833
55-64	Total	M	15	69353.	20930.	.0910775
5564	Toul	\mathbf{S}	21	93855.	19367.	$.0403220$
55-64	Total	NM	6	35389.	15033.	. 1804569
53.64	Total	Toal	52	246708.	35316.	. 0204914
65.49	Malo	M	6	27450.	13480.	. 2411725
65.69	Male	S	1	5738.	5738.	1.0000000
6569	Male	NM	3	10665.	6212.	
$65-69$	Male	Total	10	43852.	15913.	$.1316878$
$65-69$	Fomale	M	6	25670.	10348.	$.1688572$
$65-69$	Female	W	10	39949.	13637.	$.1165299$
$65-69$	Female	S	4	$18 \% 63$.	9836.	2690720
$65-69$	Female	NM	5	19067.	8551.	2011198
$65-69$	Female	Toul	25	103648.	20332.	.0403988
$65-69$	Tolal	M	12	$53120 .$	$20067 .$	$.1427083$
$65-69$	Total	S	5	$24701 .$	$11388 .$	$.2125446$
$65-69$	Total	NM	8	29731.	$10669 .$	$.1263746$
$65-69$	Total	Toul	35	147500.	$28171 .$. 0364758
$70-74$	Male	M	7	26507.	$10149 .$	$.1465923$
$70-74$	Male	NM	2	$10523 .$	$7442 .$	$.5002612$
70.74	Male	Trual	9	37630.	12585.	$.115 s 128$
70.74	Female	M	3	12172.	7083.	. 3386633
$70-74$	Female	W	6	$24366 .$	9978.	.1677108
$70-74$	Fornale	S	3	$16302 .$	$9415 .$	$.3335978$
70.74	Fomale	NM	3	$12947 .$	7512.	$.3366193$
$\begin{aligned} & 70-74 \\ & 70.74 \end{aligned}$	Formale	Total	15	65786. 38679	18699. 15046	.0807925 1513221
$\begin{aligned} & 70-74 \\ & 70-74 \end{aligned}$	Total	M	10	$38679 .$ $2940 .$	$\begin{aligned} & 15046 . \\ & 10574 . \end{aligned}$	$\begin{aligned} & .1513221 \\ & .2030004 \end{aligned}$
70-74	Total	Toul	24	102816.	25600.	. 0619948
75-84	Male	M	5	19544.	8793.	. 2024056
75-84	- Male	W	3	8736.	5046.	. 3336572
$75-84$	Male	Total	8	28280.	10138.	. 1285093
$75-4$	Female	M	2	$7917 .$	$5598 .$	$.5000312$
$75-84$ 75.84	Female	W	17	$71632 .$	1733.	$0612834 .$
$\begin{aligned} & 75-4 \\ & 75-14 \end{aligned}$	Fernale	S	1	$3901 \text {. }$	$3901 \text {. }$	1.0000000
$\begin{aligned} & 75-84 \\ & 75-84 \end{aligned}$	Female	NM	4	$23433 .$	$19539 .$	$.6952958$
$\begin{aligned} & 75-84 \\ & 75-84 \end{aligned}$	Female Tonl	Toul	24	105883 2741	27254. 13039	$\begin{aligned} & .0650218 \\ & .2271973 \end{aligned}$
$\begin{aligned} & 75-84 \\ & 75-84 \end{aligned}$	Tolal Total	M	7	27461. 80368.	$13089 .$ $19766 .$	$.2271973$ 0604910
75-84	Total	Total	32	135163.	33839.	.0626804
$85+$	Malo	S	1	4704.	4704.	1.0000000
$85+$	Femmle	M	1	2840.	2840.	1.0000000
$\begin{aligned} & 85+ \\ & 85+ \end{aligned}$	Female Femple	W	8	28493.	11111.	. 1520652
$\begin{aligned} & 85+ \\ & 85+ \end{aligned}$	Femmle Femple	NM	2	$\begin{gathered} 7703 . \\ 30036 \end{gathered}$	5467. 12705.	.5038455
$\begin{aligned} & 85+ \\ & 85+ \end{aligned}$	Female Total	Total Total	11 12	$\begin{aligned} & 39036 . \\ & 43740 . \end{aligned}$	$\begin{aligned} & 12705 . \\ & 13548 . \end{aligned}$	$\begin{aligned} & .059296 \\ & .0959363 \end{aligned}$

OASDI and ESt						
Total	Toual	Toral	366	1593359.	152132.	. 0090592
Total	Total	NM	51	243820.	33439.	. 0188046
Toul	Total	S	59	259581.	37829.	. 0212375
Toal	Toial	W	168	701867.	69325.	. 0098125
Toul	Total	M	88	393092.	74110.	. 0355438
18-24	Male	NM	2	8441.	5993.	. 5040591
18-24	Female	NM	4	18518.	9315.	. 2530180
18-24	Total	NM	6	26959.	11076.	. 1687959
25-34	Male	S	1	10088.	10088.	1.0000000
25-34	Male	NM	7	33532.	10389.	. 0959927
25.34	Male	Total	8	43600.	14467.	. 1100987
25-34	Female	W	1	3580.	3580.	1.0000000
25-34	Fomale	NM	4	17978.	8990.	. 2500436
25.34	Fermale	Total	5	21557.	9376!	. 2014712
$25-34$	Total	NM	11	51510.	13738.	. 0711380
25.34	Toual	Total	13	65157.	17404.	.0713514
$35-4$	Male	NM	4	20395.	10223.	. 2512503
35-4	Female	W	1	4870.	4870.	1.0000000

Table I.-Variance estimates for OASDI and SSI participants under SSA-administered programs-Continued

As	Sex	Marital status'	Unweighted couns	Eximate	Standard error	Rolative variance

35-44	Fermale	S	3	11948.	6915.	. 3349714
35-44	Female	NM	1	S543.	5543.	1.0000000
35-44	Fermale	Toual	5	22360.	10112.	. 2045137
35-44	Tual	NM	5	25938.	11629.	. 2010072
35-44	Tual	Toual	9	42755.	14379.	$.1131078$
45-54	Male	M	1	6263.	6263.	1.0000000
$45-54$	Male	W	1	4059.	4059.	1.0000000
45-54	Male	S	1	5157.	5157.	1.0000000
45-54	Male	NM	5	25960.	13638.	. 2759768
45.54	Male	Toul	8	41439.	16379.	. 1562345
45-54	Female	M	1	3739.	3789.	1.0000000
45-54	Female	W	1	4022.	4022.	1.0000000
45-54	Fermale	S	6	31886.	13127.	$.1694950$
45-54	Fomale	NM	2	8454.	5995.	. 5028209
45-54	Female	Toul	10	48150.	15453.	. 1029962
45-54	Tocal	M	2	10052.	7320.	$.5302876$
45-54	Total	W	2	8080.	5713.	$.5000105$
45-54 45-54	Toul	S	11	37043.	11909.	$.1033558$
45-54	Toul	NM	10	34414.	$14897 .$	$.1873841$
45.54	Total	Toul	18	89589.	22334.	$.0621503$
55-64 55-64	Male	M	6	25913.	12198.	. 2215964
$55-64$	Male	W	1	4987.	4987.	1.0000000
$55-64$	Male	S	2	10625.	7717.	. 5276058
55-64	Male	NM	3	15120.	8737.	. 3339024
55-64	Male	Toul	12	56643.	17594.	. 0964783
$55-64$	Female	M	8	34486.	14040.	. 1330844
55-64	Female	W	11	46099.	14788.	$.1029058$
$\begin{aligned} & 55-64 \\ & 55-64 \end{aligned}$	Fermale	S	9	34385.	12596.	$.1341939$
$\begin{aligned} & 55-64 \\ & 55-64 \end{aligned}$	Fermule	NM	2	9177.	6489.	. 5000067
$55-64$ $55-64$	Fermale	Toul	30	121146.	23980.	$.0350169$
$55-64$ $55-64$	Total	M \mathbf{W}	14	64399.	20216.	0985467
55-64	Toual	W	12	51085. 45010.	16923. 14772.	.1097383 .1077163
55-64	Toul	NM	5	24296.	10883.	. 2006359
55-64	Toul	Tocal	42	184789.	32842.	. 0315871
$65-69$	Male	M	12	53931.	17970.	. 1110225
$\begin{aligned} & 65-69 \\ & 65-69 \end{aligned}$	Mule	W	2	7523.	5437.	$.5222957$
65-69	Male	S	1	6603.	6603.	1.0000000
$65-69$	Malo	Toul	15	60057.	18906.	. 0771726
$65-69$	Fimale	M	6	24831.	8618.	$.1204502$
$65-69$	Fermale	W	32	129568.	26794.	.0427633
$\begin{aligned} & 65-69 \\ & 65-60 \end{aligned}$	Female	S	5	22668.	10161.	$.2009360$
65-69	Female	NM	3	12794.	7440.	.3382045
65-69	Female	Tual	46	189861.	29768.	. 0245832
65.69	Toul	M	18	78762.	22078.	. 0785764
65-69	Toal	W	34	137091.	29934.	. 0476783
65-69	Toual	S	6	29271.	12118.	. 1713932
65-69	Tutal	Tual	61	257917.	37955.	$.0216558$
70-74	Male	M	8	31406.	10147.	. 1043939
70-74	Male	W	3	11621.	6777.	.3401275
70-74	Male	S	2	8966.	6391.	. 5080770
70-74	Male	NM	3	15018.	8770.	. 3410458
70-74	Male	Toal	16	67010.	20146.	. 0903885
70-74	Female	M	11	50253.	17738.	.1245843 0327747
$70-74$	Feasale	W	39	163619.	29621.	. 0327747
$70-74$ $70-74$	Female	S	13	54596.	15206.	. 0775686
$70-74$ $70-74$	Female	NM	4	16552.	8410.	. 2581784
70.74	Toul	M	19	81659.	21322.	. 0681784
70-74	Tual	W	42	175240.	31815.	. 0329614
70-74	Toal	S	15	63562.	16201.	. 0649655
70-74	Toal	NM	7	31570.	12151.	.1481469
70.74	Toal	Toul	83	352029.	51120.	$.0210879$
75.84	Male	M	19	83750.	27374.	. 1068347
75-84	Male	W	8	39519.	14358.	$\text { . } 1320007$
75-84	Male	S	3	11340.	6703.	$.3494227$
75.84	Male	NM	1	4216.	4216.	1.0000000
75-84	Male	Toul	31	138824.	30551.	. 0484303

Table I.-Variance estimates for OASDI and SSI participants under SSA-administered programs-Continued

Ase	Sex	Marital matus'	Uumoinhed coum	Emimate	Siendard emror	Relative variance
OASDI and SSI-cont.						
78.4	Female	M	11	49022.	15289.	. 0972771
75-4	Female	W	37	163484.	28646.	. 0307027
75-4	Female	S	8	34.64.	12522.	. 1289945
75-14	Femalo	NM	6	24888.	2451.	. 1153048
75-4.4.	Fomale Ton	Total	62	272257.	39936.	$.0215161$
75-4.4.	Total Tolal	M \mathbf{W}	30	132771.	$390 \% 6$.	$.0867091$
75-94	Total	W	45	203003.	32494.	$.0256211$
75-94	Toul	NM	11	46204.	14203.	.094941 1053015
75-94	Total	Total	93	29103.	S8333.	.1053015 .0204830
854	Malo	M	3	15476.	5219.	. 1137502
254	Malo	W	5	22409.	10090.	. 2027545
854	Mole	S	1	6166.	6166.	1.000000
85+	Male	Total	9	44050.	12925.	. 0861010
254	Female	\mathbf{M} \mathbf{W}	2	9975.	$2060 .$	$.5010565$
254	Female Fermale	\mathbf{W} \mathbf{S}	26	96512. 10312.	17763.	$.0338759$
854	Female	NM	2	10312.	7744.	.5639426 5007461
854	Femmio	Total	32	124036.	22002.	.5007761 .0314648
$85+$	Total	M	5	25450.	8883.	. 1218274
884	Tral	W	31	118920.	20795.	.0.103792
	Tual	S	3	16477.	9498.	.3601795
8 +	Total	Total	41	163035.	26407.	. 0246826

'NM = Never merried; $\mathbf{S}=$ Separned; $\mathbf{W}=$ Widowed; $M=$ Mervied.

Chart I.-Half-sample assignment for pseudo-unit 1 cases

Stratum	Half-sample
1	11111110111010011011100011010110100011101001010011100010011010001000000
2	11111101110100110111000110101101000111010010100111000100110100010000001
3	1111101110100110111000110101101000111010010100111000100110100010000011
4	11110111010011011100011010110100011101001010011100010011010001000000111
5	11101110100110111000110101101000111010010100111000100110100010000001111
6	11011101001101110001101011010001110100101001110001001101000100000011111
7	10111010011011100011010110100011101001010011100010011010001000000111111
8	0111010011011100011010110100011101001010011100010011010001000000111111
9	1110100110111000110101101000111010010100111000100110100010000001111110
10	1101001101110001101011010001110100101001110001001101000100000011111101
11	10100110111000110101101000111010010100111000100110100010000001111111011
12	01001101110001101011010001110100101001110001001101000100000011111110111
66	00000011111110111010011011100011010110100011101001010011100010011010001
67	00000111111101110100110111000110101101000111010010100111000100110100010
68	0000111111011101001101110001101011010001110100101001110001001101000100
69	0001111110111010011011100011010110100011101001010011100010011010001000
70	00111111101110100110111000110101101000111010010100111000100110100010000
71	01111111011101001101110001101011010001110100101001110001001101000100000

NOTE 2: Evaluation of Direct Variance Estimates from the 1984 SIPP Public Use File

Case weights and variable values were based on the rotation group as shown below:

Rotation group Month (*)

| 1 | . | . |
| :--- | :--- | :--- |$\quad . \quad . \quad . \quad 3$

The variables are referred to by their public use file names. (Starting character position of the month-1 field is shown in parentheses.)

1. Age 16 and over AGE-* (2206) >16.
2. Low Income Cash Only (LICO) H*TOTINC (178) < H*POV\$ (173) .
3. LICO plus government noncash transfers (LICNC) H*TOTINC (178) +H*NONCSH (215) <H*POV (173).
4. Receiving Unemployment Compensation (UNCO) IO5AMT* (3820) +IO6AMT* (3848) +IO7AMT* (3876) >0.
5. Receiving Cash from a means tested program (CBPR) H*-TRAN (201) >0..
6. Receiving food stamps (FS)

H*-FDSTP (251) >0.
7. Receiving noncash benefits other than food stamps (NCBPR) CAIDCOV* (2672) $=1$, or H*PUBAMT (258) >0, or H*-LUNCH (266) $\neq 0$, or H*-BREAK (267) \neq, or H*-4804 (269) >0, or H*NONSCH (215) >H*-FDSTP (251).
8. Some labor force activity (SLFA) ESR-*(2593) ≥ 1, and ESR-* (2593) ≤ 7.
9. Hispanic (HIS)

ETHNICTY (2278) ≥ 14, and ETHNICTY(2278) ≤ 20.

Evaluation of Direct Variance Estimates from the 1984 8IPP Public Use File

INTRODUCTION

The 1984 public use data files of the Survey of Income and Program Participation (SIPP) provide pseudo stratum and pseudo primary sampling unit codes that permit direct estimates of sampling variances by a number of methods. The actual sample design parameters are withheld from public use to prevent access to small geographic areas where disclosure of individual identities might be possible. The Social Security Administration (SSA) has used the pseudo codes to compute sampling variances for SSA program participants. (Bye and Gallicchio 1988.) Although the variance estimates appeared to be reasonably well behaved, no external assessment of them was made.

In this note we report the results of a comparison of direct variance estimates from the public use file with variance estimates based on the original sample design computed by the Bureau of the census. The comparison involves estimates of 36 population totals that comprised the item set for the first generalized curve ("program participation and benefits, poverty") in the SIPP User's Guide (1987, page 7-5). The SSA direct variance estimates were computed using 72 balanced half samples derived from the pseudo design. Details are provided in Bye and Gallicchio (1988). The Census estimates were obtained from a set of 50 half samples that were not fully balanced derived from the original design. Case weights in each of the census half samples were adjusted to a common set of population totals, replicating the weighting methodology of the full sample. The SSA half sample case weights were constructed by multiplying the full sample weight by 2.

The results of the comparison are very encouraging. Most of the items compared showed small differences in coefficient of variation (CV). The differences were both positive and negative with no apparent pattern. This finding together with the ease of computation of the estimator makes the direct estimation of variances from the public use sample very attractive to the data analyst.

VARIANCE ITEMS

This section presents the SSA item specifications. (An exact match of public use file estimates with those provided by Census was not expected because the Census estimates were produced some years ago from an internal file for which specifications are not longer available.) The 36 items were combinations of 9 characteristics (Bureau of the Census, 1985). SSA's construction of these characteristics relate to individual and household status as of September 1983.

RESULTS

Table 1 presents the comparison of Census and SSA variance estimates for the 36 items. As expected the estimated totals do not agree exactly, and these differences contribute to the differences in estimated standard errors. A more meaningful comparison, therefore, is the ratio of CVs. With the exception of items 26 and 32 , the Census and SSA CVs are quite similar. The ratios of the SSA CV to Census CV range from a low of .849 to a high of 1.093. There is no apparent pattern to the differences as a function of size of the estimate.

The SSA CV for item 26 (item 32 consists of essentially the same sample cases as 26) is about 50 percent larger than the corresponding Census CV. An examination of the 72 SSA half sample estimates of this characteristics (data not shown here) indicates a wide range of estimated totals but no extreme outliers. The size of the CV for this estimate appears to be a chance occurrence indicating, perhaps, that the SSA variance estimator might have a larger variance than the Census estimator, especially when cells are small. A comparison of substantially more items would be needed to investigate this further.

REFERENCES

Bye, Barry V. and Gallicchio, Salvator J., "A Note on Sampling Variance Estimates for Social Security Program Participants From the Survey of Income and Program Participation," Social Security Bulletin, Vol. 51 No. 10, October 1988.

Survey of Income and Program Participation, User's Guide, Bureau of the Census, Department of Commerce, July 1987.

Memorandum for Documentation from Karen E. King, Subject: SIPP Variances: Items for Generalized Variance Parameters, Bureau of the Census, Department of Commerce, June 15, 1985.

Estimate	St. Err.	CV	Estimate	St. Err.	CV	Eatimate	St. Err	CV
20875350	693897	0.033	21459181	707972	0.033	1.028	1.020	0.993
19791310	684505	0.035	20373140	701869	0.034	1.029	1.025	0.996
3038883	154221	0.051	2916786	156861	0.054	0.960	1.017	1.060
14556060	703225	0.048	14546133	651057	0.045	0.999	0.926	0.926
11920830	551678	0.046	12006268	535354	0.045	1.007	0.970	0.964
25730990	875913	0.034	24921228	898371	0.036	0.969	1.026	1.059
112328300	1884640	0.017	115087192	1901174	0.017	1.025	1.009	0.985
9497841	324529	0.034	9625030	354010	0.037	1.013	1.091	1.076
2913951	149957	0.051	2799895	155409	0.056	0.961	1.036	1.079
5516297	258996	0.047	5469103	246196	0.045	0.991	0.951	0.959
10841920	445140	0.041	11296831	455121	0.040	1.042	1.022	0.981
124932	24073	0.193	116890	23229	0.199	0.936	0.965	1.031
8674453	432411	0.050	8810027	434336	0.049	1.016	1.004	0.989
519714	66145	0.127	556148	64921	0.117	1.070	0.981	0.917
6949680	450128	0.065	6899747	412336	0.060	0.993	0.916	0.923
8561362	454857	0.053	8514647	431563	0.051	0.995	0.949	0.954
11244680	507620	0.045	10558880	500328	0.047	0.939	0.986	1.050
10033130	323310	0.032	10162351	358123	0.035	1.013	1.108	1.094
502881	63081	0.125	539965	64644	0.120	1.074	1.025	0.954
3628493	208210	0.057	3485122	187039	0.054	0.960	0.898	0.935
16833	8519	0.506	16183	8105	0.501	0.961	0.951	0.990
4588350	306016	0.067	4686842	310529	0.066	1.021	1.015	0.993
960ヶ953	625095	0.065	9461055	651284	0.069	0.985	1.042	1.058
2371371	274453	0.116	2247679	275540	0.123	0.948	1.004	1.059
2212253	258185	0.117	2112670	262870	0.124	0.955	1.018	1.066
235565	35162	0.149	240340	52543	0.219	1.020	1.494	1.465
1704630	212180	0.124	1669796	203091	0.122	0.980	0.957	0.977
1602333	210802	0.132	1555791	187125	0.120	0.971	0.888	0.914
3090985	316105	0.102	3116432	330621	0.106	1.008	1.046	1.037
6231358	385368	0.062	6201126	408599	0.066	0.995	1.060	1.065
1008518	123187	0.122	988474	130064	0.132	0.980	1.056	1.077
218963	32774	0.150	227275	51143	0.225	1.038	1.560	1.503
672542	109441	0.163	682383	94327	0.138	1.015	0.862	0.849
1296891	161290	0.124	1202075	154376	0.128	0.927	0.957	1.033
16596	8850	0.533	13065	7613	0.583	0.787	0.860	1.093
1054751	126333	0.120	1000704	128222	0.128	0.949	1.015	1.070

[^0]: ${ }^{\circ}$ Office of Research and Sertistics, Office of Policy, Social Security Administration.
 'Gemeral information on the SIPP can be found ia Dawa Nebsoa, David McMillen, and Dasial Kaspryzk, An Overview of the Sarvey of Income and Progran Participation (SIPP Workios Paper Series, No. 8401, updete 1), Bureau of the Census, Department of Cormserce, 1985.
 ${ }^{2}$ Dentun R. Vaughan, A Survey-Bured Type of Benefit Code for the Sucinl Security Program (ORS Working Paper Series), Oftice of Research and Statistics, Social Socurity Admidistration (fortheomiay).

[^1]: ${ }^{3}$ Anaual Statistical Supplemient to the Sociul Soceurity Bulletim. 1997, Office of Reswarch and Sulizics, Social Security Adminiaration, 1987, whles 15-22.

[^2]: ${ }^{4}$ Survey of Income and Program Participation, User's Guide, Bureau of the Census, Deparment of Commerce, July 1987, pages 7-1 through 7-27.
 ${ }^{1}$ Kirk Wolver, Introduction to Varianee Eetimation, SpringerVerlog, New York, 1985.

[^3]: ${ }^{6}$ K. L. Plackelu and J. P. Burman, "The Dusign of Oplimum
 Multifactor Experiments," Biomatrika, 33(1946), pagas 305 and 325.
 'Woller (1985), op. cit., references a number of empirical investigations supporting the use of equation (1).

[^4]: 'Sur, fior examplo, The Current Populntiou Survey: Dexigm and Methodology (Technical Paper 40), Bureau of the Census, Department of Commirce, January 1978.

[^5]: -There is no specific justification for this weighted leam squares appromeh other than the unefulness of its resulhs. Ordinary lean squares extimates, minimizing

 $$
 \sum_{i=1}^{1}\left(R v_{i}-\hat{R} v_{i}\right)^{2}
 $$

[^6]: "The estimated mediana shown in the Supplement were computed try the TPL tabulation program on an IBM system. The medians reported here were computed by the PASS tabulation program on a UNIVAC system and they sometimes differ from the Supplement estimates by small amoums.

[^7]: "J. R. Grizke, C. F. Starmer, and G. C. Koch, "Analysis of Categurical Data by Liniar Models," Biometrics, September 1969, Pugiss 489-504.
 The asynpituic normality of the estimatid medians follows from the asymplotic normality of the extimated ratios ($\mathrm{S}_{50} / \mathrm{N}_{\mathrm{j}}, \mathrm{S}_{\mathrm{j}} / \mathrm{N}_{\mathrm{j}}$) of which the mevian is a linear function. The covariance mancix compuled by half-sample seplication on the pseculo cesign is not a consisten: exiimate. Still, it is believad thet the GSK test saxistics provide useful information abouk the real spread in the medians, even if the true signiticance kevels are not known.

[^8]: ${ }^{13}$ A sampling variance cannot be estimated for totals based on 1 emple case. Algebraically, the bolanced half-sample estimator yields a perfect 1.0 for the estimated relative variance. Thitty-nins of these cells are shown in appendix teble I.
 'The estimated constan, a, is positive. Although the rationale presemed suggests that a should be megative, the algorithm used to estimate the paramuters does not impoes this constrains. The estimated dusign effect from the b coefficient is

[^9]: Values for a and N are obtained from the firsit item in the variance table in the appendix.
 ${ }^{19}$ Variance curves were also estimated for sets of inems for several aubpopulations of the total beneficiary pogulation: disabled workers. persons aged 65 or older, and persons receiving SSI payments. Generally, the sizes of sundard errors for similar size cells across thase groups did not differ. A curve was also estimated for the group aged 18 or olher, using inems derived from cross-classifying age, family sizs, and family income. Agaia, no substantial differences were seen in estimaled a and b parambers.

[^10]: unithod using a sut of 50 half samples that was not fully balanced. The appendix proviches a brief description of the procedures used to crente the psundu disign corles.
 ${ }^{10}$ For a desicription of the items, see "Memorandum for Ducumination from Karen E. King, Subject: SIPP Variances: hems by Generalized Variance Parameter, " Bureau of the Census, Dipartment of Commerce, June 19, 1985. The Census direct variance estimates are unpublished and were made available by the Suatistical Methods Division, Bureau of the Census.
 ${ }^{20}$ The Cersus Burcau curve-fiting algorithm differed from that discribed above in that the relative variance for the overall population total. T, was constrained to be zero. Thus, $a+b / T=0$ or $a=-b / T$, and b is cstimuled from a one paramber model $V(x)=b(1 / x-1 / T)$. This approuch is reasonable because the case weights are adjusted to achicve certain population totals. However, imposing this constraips may alsu condribute to the overestimate of the variance for small prpulation estimates.

[^11]: 'These fields are idenxified as H^{\bullet}-STRAT and H^{\bullet}-HSC in the poblic use file data dictionary. The codes for month i were used. The codes do not vary by month.
 ${ }^{2}$ The 72 order design in Plackett and Burman (1946), op.eth., was used. The array can he generated by shifling the first row one digis to the lef for each suhsequent row.
 'This estimator doce not fully replicate the oripinal SIPP extimmor in each half sample. The original SIPP estimator conaisted of a mumber of mulkiplicative adiusiments to the raw ense weights. Similar edjustments should have heen applied separately in each hall sample to properly replicate the full sampio extimator. The overall effeet on the estimmed variance of not having done this is unknown.

[^12]: "All variahles are referred to by their public use file variable names.

