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Variance Formulae for the Generalized Composite 

Estimator Under A Balanced One-Level Rotation Plan 

ABSTRACT 

In many surveys, including the Current Population Survey of the U.S. 

Bureau of the Census and the Labour Force Survey of Statistics Canada, 

participants are interviewed a number of times during the life of the 

survey, a practice referred to as a rotation design or repeated sampling. 

Often composite estimation--where data from the current and earlier 

periods of time are combined--is used to measure the level of a 

. characteristic of interest. As other authors have observed, composite 

estimation can be used in a rotation design to decrease the variance of 

estigators of change in level. We derive simple expressions for the 

variance of a general class of composite estimators for level, average 

level over time, and change in level. These formulae hold under a wide 

range of rotat ion designs. 

1. INTRODUCTION 

The Current Population Survey of the U.S. Bureau of the Census and the 

Labour Force Survey of Statistics Canada are two examples of repeated 

sampling or rotation designs. In each case, households are interviewed a 

number of times before leaving the sample. In the CPS, households are 

interviewed for four months, then leave the sample for eight months, and 

finally return for four more months. In the LFS, participating households 

respond for six consecutive months and do not return. 

A major advantage of using a rotation design is the smaller variance for 

estimates of change when measurements within groups are positively 

correlated from one time period to the next. For the CPS and the LFS, 

there are sample overlaps of 75% and 83X, respectively, from one month to 

the next. Estimates of month-to-month change or year-to-year change can 
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be improved by selecting the proper plan and estimator. Respondent burden 

can be lessened by manipulating the sequence of periods when respondents 

are in and out of sample. For more on these topics, see Woodruff (1963), 

Rao and Graham (1964), or Wolter (1979). 

Every ten years, during the redesign of the current surveys of the Census 

Bureau, many aspects of the various surveys are modified. When evaluating 

these changes, it may be appropriate to consider implementing a different 

rotation scheme. Similarly, a researcher planning a new surv:?y may decide 

to use a rotation design, but must select one which accommodates his 

needs. Any such plan requires the variance formulae for the estimators of 

-level and change. 

Suchyariance derivations are not conceptually difficult, but can be quite 

tedious. Some of the more common estimators are “composite” in nature. 

In order to take advantage of repeated sampling, they combine information 

from the present with information from one or more previous periods. 

Partial estimates obtained from the same rotation group at different times 

are combined into a final estimator. While the variance can be decreased 

by selecting the combination judiciously, calculating this variance may 

become more complex because of the correlation patterns involved among the 

repeated groups. 

For a general rotation plan, subject to specific restrictions, we present 

simple formulae for the variance of estimators of level and change. The 

derivations are applied to an important and quite general class of 

estimators called the general composite estimator (Breau and Ernst 1983). 

Although CPS and LFS use different estimators and rotation plans, each 

will be a special case of those we consider. 

In Section 2, we define the generalized composite estimator and state 

results. An example is provided in Section 3. Proofs of the theorems are 

given in Section 4. 



2. NOTATION AND RESULTS 

Although rotation schemes can assume infinitely many forms, we restrict 

this discussion to one type. At each period in time, a new rotation group 

enters the sample, and follows the same pattern of periods in and out of 

sample as every preceding group. In addition, responses refer only to the 

current period of time, whether or not the participants were in sample in 

the previous period. We call this design a “balanced one- level” rotat ion 

plan. The design is “balanced” because the number of groups in sample at 

any time is equal to the total number of time periods any one group is 

- included in the sample. Wolter (1979) uses the terms one-level and 

two-level to indicate the number of periods for which information is 

solkited in one interview. 

The scheme used in the LFS satisfies these restrictions. Each month a new 

group enters, and remains in the sample for five more months. The CPS as 

it currently operates follows these guidelines in a 4-8-4 scheme. Before 

July 1953, however, CPS used a plan where five rotation groups entered, 

one each in consecutive months. In the sixth month, no new grout entered. 

The process then continued in the same manner, with groups exiting after 
. 

six months in sample. 

One problem with the pre-1953 CPS design is the introduction of 

month- in- sample bias, often referred to as rotation group bias. Of 

greater concern here is the changing pattern of rotation group 

appearances. The variance of a composite estimate depends on when each 

participating group appeared in sample before, and the covariance 

structure for identical groups in different months. If the pattern of 

appearances changes from month to month, the variance formula of the 

estimator also changes. Under a balanced design with stationary 

covariance structure, general derivations are possible. 
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Throughout this paper, we will use “month’ to refer to the period of time 

in which interviews are done, for brevity and because CPS and LFS use the 

month to divide the life of the survey. However, our results will apply 

to any period of time, provided the rotation plan is balanced and 

one- level. 

Suppose that every rotation group is in sample for a total of m months 

over a period of Y months, i.e., it is out of sample for H-m months after 

first entering and before exiting. Because the rotation design is 

balanced, m groups are in sample during any month. Let zh i denote the 

estimate of “monthly’ level from the rotation group which is in sample for 

- the ith time in month h. We treat only the generalized composite 

estimator (GCE), as defined recursively by Breau and Ernst (1983). For 

monthly level: 

m m 
yh = iflaixh, i - ki!lbixh- 1,i + Icy& 1 ’ (1) 

where k, the ai’s and the biys may take any values subject to 0 5 k < 1, 

m m 
C ai = 1, and 

i=l 
C bi = 1. The composite and AK composite estimators used 

i=l 
in CPS are special cases of the GCE. For information on these, see Gurney 

and Daly (1965), Hanson (1978), Huang and Ernst (1981), and Kumar and Lee 

(1983). 

The GCE is more restrictive than a general linear estimator which combines 

x . values from the current and many prior months. However, the GCE has 

b% shown to perform almost as well (Breau and Ernst 1983). It has the 

advantage that only data from two months--the current month and the 

preceding one--need be stored. Although yh incorporates earlier data, it 

is summarized through VA- l. 

To find expressions for the variance of the GCE, we assume a stationary 

covariance structure: 
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(i) Var(x ) = (r2 for all h and i; 

(ii) Cov(r~~~,zh,j) = 0 for i # j, i.e., different rotation groups 

in the same month are uncorrelated; and 

bii> cov(zh iyx3 j) = Plh-3(“2Y if the two x’s refer to the same 

rotat& g&p Ih-al months apart; or 0, otherwise. Take p. 

to be 1. (2) 
As an example, the covariance structure for the 4-8-4 plan is specified in 

Breau and Ernst (1983). 

Before stating our results, we introduce notation. Let us define the set 

. To as follows. Consider any rotation group. Let To index the set of 

“months” when this group is not in samole, labeling as month one the month 

this&roup is first interviewed, but not going beyond month Y. Because 

the rotation plan is balanced, the composition of To does not depend on 

which group is selected. 

Next we create the 1x1 vector a. Define the ith component of a to be 0 if 

i E To. This step fills Y-m positions in a. Then the values al, a2, . . . . 

am are inserted in order into the remaining m components, starting with 

the first. We call this a vector in “TIS (time-in-sample) form.” For 

example, in a 4- 8- 4 rotation plan, To = (5, 6, . . . , 12)) and aT = (al, a2, 

a3, a4, 0, 0, 0, 0, 0, 0, 0, 0, a5, u6, u7, as). The Hxl vector b is 

formed analogously in TIS form. 

Let J be the MxY matrix with l’s on the subdiagonal, and O’s elsewhere. 

Formally, J. . = 
23 

1, if i-j = 1, and 0, otherwise. Define the HxY matrix 4 

by: qij = kGjpi-j, if 1 < j < i < Y, and 0, otherwise. Finally, let I be 

the YxY identity matrix. 

We state several theorems, and leave the proofs to Section 4. 

THEOREM 1. If the GCE of level is defined as in (1), and the covariance 

structure of (2) holds, then 
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WYh) = u2 1 uTu + k2bT(b- au) + 2(u-k2b)Tq(u- b)} / (1- k2) 

(3) 
Notice that when one uses an unweighted average of the estimates from the 

m rotation groups of the current month, k = 0, 4 = 0, and ai = l/m for 

i = 1, 2, . . . , m. Then Var (I/k) = r2/m, as expected. 

THEOREM 2. Let Yh - Yh- 1 be the GCE estimator of “monthly” change. 

(i) If k = 0, then Var(yk - Yk-1) = 2’r2 UT(I-/+)a; 

(ii) if 0 < k < 1, then Var(yh - ~~-1) 

= c2(uTu + k2bTb - 2kpluTLb)/k - (1-k)2var(yh)/k (4) 
. 

The average level over a period of time, perhaps a year, is often of 

interest. It suffices to find the variance of the appropriate sum. 

Denot3 by Sk t the sum of the GCE’s for the last t+l months: 

‘h,t = yh + ih-1 + . . . + Yh- t’ t 1 O* 

THEOREM 3. Define the series of 1x1 vectors vl, u2, . . . : 

i = 0, 1, . . . . t, a + [(k - ki+l)/(l-k)] (u-b), 
v. = 

2 [(k - kt+2)/(l-k)] ki-‘-l(u-b), i = t+l, t+2, . . . 

= u2 ( ; v .Tt$ + 2 ; ViT 
I- 1 

Then Var (Sk, t) 
i=() 2 

z p.du. .} 
i=o j=l J a+.7 

(5) 

The sums in (5) converge because ui is proportional to k’(u-6) for i > t. 

Another concern, besides the variance of the estimators, is 

month- in- sample bias, or more generally, time-in-sample bias. Suppose 

that E(Xh i) = yh + pi, for all h and i, 

charaiteristic to be estimated. 

where yh is the actual value of 

the This model assumes that the bias pi 

depends upon how many times the respondent has been interviewed, but not 

which month or year it is. Stating that the unweighted monthly average of 

m 
rotation group estimators is unbiased amounts to saying that I: pi = 0. 

i=l 
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THE~EEM 4. Let b be the vector of month-in-sample bias terms in TIS form. 

Under the model above: 

ti> E(Yh) = ‘h + fiT(u- kb)/(l- k), and 

(ii) E(yk - yk-1) = yh - yh-1, i.e., the GCE for monthly 

change is unbiased. 

COROLLARY 1. Under the foregoing assumptions, the mean squared error of 

the GCE for monthly level is 

PSE(Yh) = Var(yh) + [E(Yh) - yh12 

. 

= g2 cf, + k2bT(B2a) + 2(u-k2b)T#(u-b)} / (1-k2) 

+ [pT(u- kb)12 / (l-k)2 . 

3. AN EXAMPLE 

Suppose the rotation pattern is 2-l-1, i.e., a participant is in sample 

for the first two months, leaves for one month, and then returns for a 

third month. Suppose further that the correlations for the 

characteristics to be measured are estimated to be pl = .6, p2 = .5, and 

P - .4. Good values of k, ai, and b. may be found through trial and 

ezror, or through optimizing routines2(WoIter 1979). In this example, for 

simplicity let k be .5, the ai’s .3, .5, and .2, and the biys .6, .2, and 

.2, respectively. Then uT and bT are (. 3, -5, 0, .2) and (.6, .2, 0, .2). 

The matrix 4 is written in general (for the case when Y = 4) and with 

these values of k and pi: 

4 = 

0 0 0 0 

kpl 0 0 0 

k2p2 kpl 0 0 

k3p3 k2p2 kpl 0 

= 

0 0 00 

.3 0 0 0 

.125 .3 0 0 

.05 .125 .3 0 
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Vector and matrix computations give uTu = .38, bT(b-Pa) = - .20, and 

(a- k2b)Tf(u- b) = - .037125. Thus Var(yA) = .341r2. This might be compared 

to Var(ih) = Var[(xh,l + xh,J + x/&3] = .333g2, where Z h is the 

unweighted average of the estimates from the three rotation groups of the 

current month. 

For the corresponding measure of month-to-month change, uTu = .38, bTb = 

.44, and uTLb = .30. The reSult iS Var(yA - yAsl) = .4495u2. The 

appropriate formula in Theorem 2 with k = 0 leads us to Var(%A - %AWl) = 

Two points should be made here. First, one observes the improvement in 

variance of this particular composite estimator, compared with the 

unweighted average of rotation group estimates. Although the GCE suffers 

a 2.4% increase in variance while estimating monthly level, it realizes a 

15.7% decrease while estimating month-to-month change. 

In fact, even the unweighted average takes advantage of repeated sampling 

in its month-to-month change estimate. The correlation of .6 between zh 2 
Y 

and zhPl l lowers the variance from .6667c2 (using independent samples 
Y 

each month) to .5333a2 under the specified rotation scheme. 

Secondly, the values of k, ui, and bi in this example were selected for 

simplicity. Choices which minimize the variance of the estimate of 

monthly level or month-to-month change, or some combination, can be 

determined. Such values and the resulting variances demonstrate the 

benefits of using composite estimation where repeated sampling is 

involved. However, this paper merely contributes simple formulae for the 

variances of GCEs under a balanced one-level rotation plan. For more on 

actual improvements possible with composite estimation, consult the 

appropriate references given above. 
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4. DERIVATIONS OF TEE THEOREMS 

The set To was defined as the set of months, starting in the first month 

in sample, when any particular rotation group is not in sample. It is 

useful to introduce the HxH matrix I as: iii = 1 if i e To, and 0 if 

i E To; and 1. . = 0 if i # j. Using terminology from Section 2, I is a 

diagonal rnatrli where diag(l) is a set of l's in “TIS form. I’ It is always 

H 
true that Ill and lJv are 1, and &Iii = m. 

- Observe that, for any Hxp matrix r, 1k’ is the same as r, but with O’s 

across each row i, if i is in To. In other words, premultiplication by I 

“removes” (turns to 0) the rows of 1 indexed by To. If the columns of 1 

are already in TIS form, then 1r = V. Similarly, for any pxH matrix U, 

postmult iplicat ion by I “removes” the columns of II which are indexed by 

TO’ If the rows of U are already in TIS form, then 171 = U. 

Recall that L is an HxH matrix with l’s on the subdiagonal and O’s 

elsewhere. For any 1x1 vector written as vT = (vl, v2, . . . , vu), the 

product Lv becomes (0, ul, u2, . . . . v~-)T’, and vTL is (v2, u3, . . . . v~, 

0). 

Next we form vectors out of the monthly estimates from the various 

rotat ion groups. For any h, let zh be the 1x1 WCtOr comprising zh l, 

- * * Y zh m in TIS form. From the first two parts of (2) describing ihe 
Y 

covariance structure of the estimates, we conclude that Var(zh) = ~~1. 

Part three of (2) implies that cov(zhyzh-l) = rr2pllLl. Notice that 

(a) the matrix L, with l’s on the subdiagonal, “represents” the one month 

lag between the zh and zh-I values, i.e., there is a nonzero (PI) 

correlation between zhyi and Xh-l,j if i-j = 1, and (b) premultiplying 

(postmultiplying) by I inserts O’s corresponding to O’s in zh (zh-l). 
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It is readily seen that L~j = 1 if i-j = r > 0 and 1 < j,i 5 H (take Lo to 

be the identity matrix). The same development as above gives cov(zhyzh-2) 

= 02p21L21. In general, 

cov(xh,zh- ,.> = cr2prlLTI, for r = 0, 1, 2, . . . , and all h. 

For f 2 H, LT = 0, and cov(zhyzh_, ) = 0. 

(6) 

The generalized composite estimator was written in (1) as 

m 
Yh = iflaixh, i - ki b.x i=l a h-1,i + kYh- 1 

. This can be put into vector form and made more manageable: 

yh = uTz, - kbTxh- 1 + kyh- l 

I T = 02 h - kbTxh- l + k(UTxhel - kbTZh_Z + l”yh-2) 

= UT%, + k(u- b)Txh- l - k2bTxhd2 + k2yh- 2 

= UT=, + k(u-b)Txh-l - k2bTxhw2 + k2(UTxhs2 - kbTZh-3 + ICY& 

= UTxh + k(u- b)TXh- l + k2(u- b)Txh-2 - k3bTxh- 3 + k3yh- 3 

= . . . 

= uTxh + k(U-b)Txh-l + k2(u-b)Txh-2 + k3(u-b)Txh-3 + ..* 

= fxh + (U- b)T ~ k’xh- i 
i=l 

From the results in (6) and (7)) we can proceed with the proofs of the 

theorems. 

PROOF OF THEOREM 1. 
mm 2i 

Var(Yh) = i’var(xh)u + (u- b)l C k Var(xh- i) (u-b) 
i=l 

+ 2 uTi~lk”Cov(xh,xh- $ (u-b) 

+ 2 (a-b)T ~ ~ ki’jCOV(Xh-i,Xh_j) (U-b) 

l<i<j 

(7) 
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= uTr21u + (a- b)T i k2ig21(u- b) + 2uT F kio2pitLil(a- b) 
i=l i=l 

+ 2 (u- b)T i 
m 
I: $+jr2p 

i=l j=i+l 
j- iILj- % (u- b) 

= u2 { uTlu + (a- b)Tl(u- b) k2/(l- k2) 

+ 2 uTI [ iflkipiLi ] I(u- b) 

+ 2 (u-L)~J [ ; k2i iti d- ipjm iLj- i] I(u- b) } 
i=l j= i+l 

(8) 

. Because u and u-b are vectors in TIS form, uT1 = uT, (u- b)Tf = (a- b)T, and 

l(a-b) = (u-b). It can be shown that the first expression in brackets in 

(8) &s equal to the matrix 4. Only H-l terms in the sum are necessary: 

since L is lower triangular, L2 = 0 for i 2 H. The ijth entry of 

H-l . 
C k2piLi is ki-jp ._ 2 jy if 1 < j < i 5 H, and 0, otherwise. The term in 

i=l 
the second set of brackets can be simplified. In the second sum, a change 

m 

of variables to n = j- i gives L knpnLn, which was just shown to be 4. We 
n=l 

can rewrite (8) as: 

u2 { uTu + (u-b)T(u-b) k2/(l-k2) + 2uTf(u-b) 

+ ~(u-Z,)~ ! k2i 4 (4 1 
i=l 

= (r2 { (1-k2)uTu + k2(uTu - 2bTu + bTb) 

+ 2 [ (1-k2)uT + k2(u-b)T ] !(a- b) } / (1-k2) 

= u2 {uTu + k2bT(b- 20) + 2(u - k2b)Tf(u- b)} / (l-k2), 

and the theorem is proved. 

PROOF OF THEOREM 2. If k = 0, yk = UT+ and y,,- 1 = fr,- 1. From the 

stationarity of the covariance, 

Var(!$) = Var(yhvl) = - uTu2fu - u2uTu . 
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The estimator of difference is then yk - yk-1 = uTzh - I,- 1’ Its 

variance is 

Var(Yh - Yh-1) = 2112uTu - 2u?r2p ILlu 1 = 2fT2uT( I- p1L) II. 

IfO<k<l, yk = I,- kbTZh-1 + ICY& 1 z f+kYh+ 

where Y is defined as aTzh - kbTzhs 1. 

Var( W) = uTr2tu + k2bTtr21b - 2kuT~2pllLPb 

= g2 { uTu + k2bTb - 2kpluTLb ) 

It follows from (9) that 

(9) 

(10) 

Var (Yh) = Var(Y) + k2Var(yh-1) + 2kCOV(f,yh-l) 

. 

= Var(/) + k2Var(yh) + 2kcov(f, yh- 1), and 

,2cov(y’Yh- 1) = (l/k) { (1-k2)Var(yh) - Var(Y) ) 

Now We Can Write ph - yhwl = Y + kgh-1 - yh- 1 = Y - (1-k)yh- 1. 

Var(Yh - Yh-1) = Var(Y) + (1-k)2var(Yh-l) - 2(1-k)cOV(bYh-l) 

= Var(Y) + (l- k)2var(yh) 

- (1-k)(l/k)( (1-k2)Var(yh) - Var(Y) } 

= [1 + (1-k)/k] Var(Y) + [(l-k)2 - (l/k)(l-k)(l-k2)] Var(yk) 

= (l/k) Var(f) + (l/k)(l-k)2[k - (l+k)] Var(yh) 

= Var(Y)/k - (1- k)2Var(yh)/k 

Substituting from (10) finishes the proof: 

= a2{ uTu + k2bTb - 2kpluTLb j/k - (l-k)2var(yh)/k 

PROOF OF THEOREM 3. To find the variance of the sum Sk t = yk + yk-1 + 

. . . + Yh- t’ express $t 
T T ’ T 

in the form VO zh + vl zk- 1 + u2 zk- 2 + . . . = 

m 

z ?,iTZh- i' can be determined by introducing 
i=o 

The vectors uo, vl, v2, . . . 

additional yk- i terms one at a time: 

Yh + Yh- 1 = Izh - 
T 

Icb =h- 1 + kYh.. 1 + yh-l 
T T 

= 02 h - kbTzh-1 + (l+k)(UTZhml - kb xh-2 + kYh-2) 
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= UT@, + x/,- 1) + k(U- b)TZh- l - (k+k2) bTXhe2 + (k+k2)Yhm2 

Continuing, 

yh + yh- 1 + f/h-2 = uT(z, + 2h- 1) + Icb- b)Tzh- 1 - (k+k2)bTZh_2 

+ (l+k+k2) (uTXhm2 - kbTZhe3 + kQ3) 

= UT@, + xh-1 + xh-2) + k(u- b)Txh-l + (k+k2)(u- b)TXh-2 

- (k+k2+k3) bTzh- 3 + (k+k2+k3) Yh- 3 

Including all t+l terms, 

yh + . . . + yh- t = uT(xh + xhel + . . . + xhst) + k(u-b)TXh-l 
t T 

+ (k+k2)(u-b)TXh-2 + . . . + (k+k2+ . . . +k )(a-b) xh-t 
. 

- (k+k2+ . . . +kt+l)bTzh- t-l 

+ (k+k2+ . . . +kt+l)yh- t-l 

But kcording to (7)) 

(11) 

m - 

Yh- t- 1 = uTxh- t- 1 + b- b)Tiflk"zh- t- 1s i 

The third line of (11) becomes 

(k+k2+ . . . +kt+l) [ (u- b)TXh- t- 1 + (U- b)T F “‘Xh- t-l- i ] 
i=l 

= (k+k2+ . . . +k"l) (u- b)T ~ Icj- t-lXh- j 

j= t+l 
Finally we can write 

m 

‘h,t = ifovi 
T 

=h- i = I(,, + zhml + . . . + zh-t) + k(u-b)TXh-l 

+ (k+k2)(u-b)Tzh-2 + . . . + (k+k2+ . . . +kt)(u-b)TXh-t 

+ (k+k2+ . . . +kt'l) (u-b)T ~ rCi- t-lXh_ j (12) 

j= t+l 

From (12) it is apparent that: u. = a; ui = u + (k+k2+ . . . + k2) (a- b) , for 

i = 1, 2, . . . . t; and vi = (k+k2+ . . . + k t+l)ki-t-l (u-b), for i = t+l, 

t+2, . . . . Summing powers of k produces the series of vi defined in 

Theorem 3. 
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. 

All that remains is to find the variance of the derived sum. Note that 

the vi’s, being linear combinations of u and u-b, are vectors in TIS form: 

WiTI = ViT and tvi = vi. 

var(Sh, t) = Var( F uiTzh- i) 
i=o 

= F viTvar(xh- i) vi 
i=o 

' 2 ~ ~ viTCOV(Xh-i,Xh-j)'j 

O<i<j 
m 

E v .Tu2tv 

. . 
= 

id) 2 i 
+ 2 ~ ~ viTU2pj- iIL3- ““j 

O<i<j 

= u2 ( ~ V Eli + 2 I V ~ j=~~,pj- iLj- ivj > 
i=o 2 i=o 2 

= t12 ( ; v ?Vi + 2 ii v J z pnL”l& } 
I i=o 2 i=o 2 n=l 

As before, in the final sum, n need only range from 1 to H-l, as I” = 0 

for n 2 H. 

PROOF OF THEOREM 4. From our definitions, recall that yh is the actual 

value to be estimated in month h, and pi is the bias inherent in a 

respondent’s reply in his ith time in sample. The model expressed before 

Theorem 4 assumed that E(xh i) = yh + bi. In vector form, E(zh) = 

Yhdiag(P) + @, for all h, where fl is the set of bias terms in TIS form. 

The vector diag(l) is a set of l’s and O’s, with l’s corresponding to 

months in sample (i.e., for i p To). From (4.3), 

yh = uTxh + (U- b)T ; k2Zh- i. Taking expectations, 
i=l 

E(yh) = uT(Yhdiag(l) + 8) + (a- #&+(Y”- idiag(l) + B) 

= YA uTdiag(t) + aTp + (a- b)Tdiag(l) ! kiyh- i 
i=l 

+ (u- b)T@ ! ki 
i=l 
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= Yh :a- 
i=l 2 

+ uTa + ( i a. - 
m m . 

i=l 2 
’ bi> iflk2yh- i 

i=l 

+ (u-~)~/I k/(1-k) 

= Yh + { (1-k)uT/I + k(u-b)T~ }/(1-k) + 0 

= 
‘h + (u - kb)Tfl/(l-k) 

We have used the fact that i a .= &.=I. 
i=l 2 i=l a 

The second part of the theorem follows because the bias in month h depends 

on k, u, b, and fi, but not on h. When evaluating E(yh - yh- l), the bias 

* term cancels. 
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