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It Doesn’t Make Me Nearly as CROSS
- Some Advantages of the Point-Vector Representation
of Line Segments in Automated Cartography
Alan Saalfeld
Statistica! Research Division
Bureau of the Census

Washington, DC 20233

Abstract:
The point-vector representatfon for 1line segments offers several
advantages over other more familiar representations for lines and
line segments, such as the point-slope form, the slope-intercept
form and the two-point form. With the point-vector form, line
segment intersection routines and related cartographic computations,
such as point-in-polygon routines and detection of near-
intersections, can be streamlined, simplified, and more easily
understood geometrically. The point-vector segment representation
re;.—ains fnformation on the line segment and not Just the 1line.
Special case handling for vertical lines is not necessary as with

some other representations; and several computational shortcuts can

be derived directly from the segment end-point coordinates.

Introduction:
In 1974, the Harvard University Laboratory for Computer Graphics
and Spatial Analysis published a note by David H. Douglas entitled,
"]t Makes Me So CROSS," which presented a light-hearted
discussion of some of the difficulties fnvolved in developing a

computer algorithm for finding 1ine-segment {ntersections. The



author stressed the relatively straightforward nature of the
mathematical problem, then noted fdiosyncracies of spatial position
and computer behavior which tended to frustrate any one unified

approach to solving the problem by computer.

This note recommends the use of a particuiar mathematical
représentation for line segments which facilitates many {important
computations made frequently in automated cartography, {ncluding
tests for fintersection and near-intersection. The approach resolves
a number of the {ssues raised by David Douglas and provides
siibrtcuts to related problems. Separate case treatment depending
on spatial position becomes unnecessary. Some, but not all, of the
computer behavior problems related to rounding, truncating, and
overflow and underfiow may be circumvented using the point-vector
representation described here. Integer arithmetic suffices when
line segments themselves can be describe with integer coordinates.
This last feature resolves most of the computational problems and
pé;vides significant improvement §n speed of computation when many

fntersections must be found, such as in map overilay routines.

The geometric significance of some of the intermediate computations
is also f{llustrated here; and a point-in-polygon application fis

outlined as an algorithm.

Hathematical Preliminaries.

There are many mathematical representations of straight lines in a

plane. Some expressions for the locus of a 1ine are the following:
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Point-Slope Form. Given a point (xg1¥,) @8nd slope m:

L= ((XoY) . (y-y°)=m(x-xo)}

Slope-Intercept Form. Given slope m and y-intercept b:

L = {(x,y)|y=mx+b)}

Two-Point Form. Given points (x,.y,) and (x,;,¥,):

L = {(xy) I (y-yo)/(x=xg)=(y, =y,)/(x,-%,4)}

Better Two-Pofnt Form (no possible division by zero):

L = {6y 1{y-yo) (x,=x)=(x-x) (¥,-¥,)}

Linear Equation Form. Given real numbers A, B, and C:

L= {(x,y)}] Ax + By + C = 0}

Point-Vector Form. Given point (xo,yo) and vector (vl.vz):

L = {(xg'Yo)*(rv,,rv )| r is a real number)

Notice that the point-vector form is not defined by an equation,
but instead is a parametrized expression for the l{ne. Every real
number r corresponds to a point on the line {in & one-to-one

fashion.

If the user is given the two end points of a 1ine segment (xo,yo)
and (xl.yl). then a vector which will satisfy the point-vector form
is:

(vl 'vz) = (xl_xo'yl-YO) .

.



For the above choice of vector, the point-vector form has the
followihg-lmportant property:

The point corresponding to the parameter Tot

(xg+¥o)*+(rgVysToV2) 18 on the segment Joining (x4,y,) and

lies between 0 and 1.

(xl.yl) if and only {f To

This {mportant property permits one to use the same parametrized
expression for the line and the line segment. Hereafter, it will

be assumed that the point-vector form for two given points is:

L= {(xg¥)+(rlx,=%,1srly,-¥,1)1 r is a real number)

Line Segment Intersection Detection.

Algorithms for detecting 1ine segment intersection are well-known
and generally strafghtforward. Professor Douglas has pointed out,
however, that many of the straightforward approaches have
computational drawbacks. Most algorithms use a two-stage
approach: first, they determine the point in which the extended
1fnes meet, then they check to see {f that meeting point is actually
on both segments. Occasionally, when the lines are nearly parallel
(or vertical with some approaches), or when the coordinate values
are large fn absolute value, intermediate computations lead to

underflow or overflow or arithmetic errors due to rounding.

The following description of computations of the line segment
intersection algorithm for the point-vector representation
fllustrates the ease of application of the algorithm, the one-step
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computation of the {intersection point, and simple estimates of
magnitddes of fintermediate computations (to aid In avoiding

roundoff, overflow, and underflow difficulties.)

The following mathematical notation will be used to describe the

problem and its solution. Two line segments, L and L’, are given in

the plane:
L=p,+r(p,~Py) Po=(Xg1Y,)
pl’(x"yl)
L =py 4r7(P,"—Py")
Po"(xo"yo') pl' = (xl"yl').

Figure 1. Line segments and their representation.

The values of r and r’ between 0 and | define the line segments
between p, and p, and between po' and pl' « Tespectively, Al
other values of r and r’ define points on the {nfinfite 1lines

extending L and L’ which do not lie on the finfte length segments.

For the typical intersection problem, the values of Pgs Py Po’»
and pl‘ are given. The values r and r’ are computed to satisfy
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simultaneous equations fn the coordinate functions. An

lnterseétlon occurs when r and r’ are such that:

Po * T(P, — Pg) =Py +T1°(p," - Pp")
In terms of coordinates, the above equality becomes two equations:

’ 4 r o ’
X + T(x; = Xo) = %" + 17(x, Xo")

0
Yo + Ty, = ¥o) =y, +1°(y,” = v¥,°)

l; both r and r’ are between 0 and 1, inclusive, then there is an
fntersectfon of the segments and not Jjust the lines. Moreover, If
both r and r’ are in the real {interval [0O-¢,1+€], then there is
nearly (within €) an intersection. This last check can be very
useful for finding gaps in raster-scanned vectorized files and

*spaghett i-coded™ non-topological map files.

Solving and Simplifying the Simultaneous Equations.

Unless the two lines are parallel (and that includes the case where
they are collinear), the two equations have a unique solution for
the pair r and r’. The line segments intersect if both r and r’ lfie
fn the closed fnterval [0,1]. The line segments néarly fntersect {if
both values r and r’ lie near to the finterval [0,1], but not inside
ft; or if one of the two values lies in the interval and the other
11es near but not inside the finterval [0,1]. The values of r and r’

may be found by computing the following two-by-two determinants:



(x=%g)  =(x,"=%,")

D =
(y,~Yo) =(¥;"-¥o")
(xg"~Xg) =(%;"=%g")
D, =
(Yo '=Yo) =(¥;'=¥o")
(xy=xg)  (xg"=Xg)
D, =

(y,=¥o) (¥o'-Y,)

The determinant D will be zero if and only {f the lines are parallel.
If D is not zero, thenr = D,/D and v’ = D,/D. Note that 1f the
x’s and y’s are in {integer coordinates (for finstance screen pixel
coordinates), then the D, D‘, and D2 computations are all {nteger

additions and multiplications, f.e. fast.

If the determinant D fs zero, but not both D, and D, are zero

also, then the parallel lines do not intersect. If D, Dx' and D2
are all zero, then the lines are collinear; and the segment
end-point coordinates may be compared to see {f the collinear

segments overlap or touch at a single end-point.

If the determinant D is not zero, then the following result will
further simplify checking for intersections by eliminating division:
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Lemma. A real number r lies in the interval [0,1]) if and only if
the product r(i-r) i{s non-negative.
The proof of the lemma s seen easily from the graph of the

function: y=x(1-x), which s a concave downward parabola:

Figure 2. The graph of the parabola y = x(1-x)
Moreover, since the parabola s symmetric about x=1/2, a test that
y be slightly smaller than zero is equivalent to a test that x be
near to the f{interval [0,1]), where nearness {s measured uniformly

at either end of the interval.

By the lemma, a ratfo, such as r=Dl/D. will lfe in the ftnterva!l

[0,1] if and only if:
(DID-DlDl)/(DD) i{s greater than or equal to zero.
2
Since the denominator, DD or D, is always positive, the above
expression will be greater than zero {f and only {if the numerator

is greater than zero. The numerator may be also written as:

D,(D - D,)
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Applying similar arguments to r’ = 02/0. one shows that the line

segments {ntersect {f and only {if both:
0,(0 - D,) and D,(D - D,) are non-negative.

In order to determine if an infinite line intersects a line segment,

only one of the products D|(D - D') needs to be tested.

Such a one-sided test can be the principal component of & fast
point-in-polygon algorithm such as the example outifined in the final

section of this exposition.

It is worth emphasizing that the above computation of D'(D - D')
may be done without division; and thus it is not only faster, but fis
less subject to computer f{diosyncracies associated with real

arithmetic.

The Geometric Meaning of D, D,, and D,.
The determinant D fs sometimes called the discriminant of the 1inear
equations that were solved for r and r’. The value of D is also

recognized as the norm of the cross-product of the two vectors:

{(xl-xotyl-YO) 1 (xx '-xo' 'YI '-YO')}’

The value of |D| is also equal to the area of the parallelogram
formed by placing the vectors at the origin or at a common

starting point, as in the figure below:



Figure 3. The discriminant D measures area of a parallelogram.

The sign of D depends on the orientatfon of the two vectors. The
values of D, and D, may also be regarded geometrically as areas
of parallelograms. D, corresponds to the parallelogram subtended
by the vectors formed by the vertices (xo.yo). (xo°+¥o")s and

(x,70y,7). This parallelogram will have area less than the area of
the parallelogram for D, and D, will have the same orientation
sign If and only {f the vector [("o’yo)'("x'yx)] intersects the

extended 1ine through the segment [(x,"s¥y")s(x,%sy,")].

(xl.y0) (%, %)

“. ,7.) (‘: ] 74’

Figure 4. Parallelograms for D and Dx'
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A Point-in-Polygon Algorithm Based on Point-Vector Representation.

The Jordan Curve Theorem provides an elegant means of determining

if & point lies within a closed curve. By drawing any ray from
the point tn questfon and counting the number of times the ray
crosses the curve, one may know f{f the point is inside or outside
the curve. An odd number of crossings means the point {s {nside;
an e-ven number signifies the point 1{is outside. Of course,
implementation of the rule is not always easy for &any curve.
However, for polygons (closed polygonal curves) the rule is fairly
easy to implement. There will be some need to clarify the meaning
of” "crossing" the curve. One may guarantee only legitimate full
crossing--not merely touching-- of the {nterior segments of the

polygonal line by choosing the ray judiciously, as shown below.

Suppose ("o'yo) fs the given point to be tested to see if it is

inside the polygon {(xl.yl).(xzoyz).....(xn-yn)]-

Consfder the minimum non-zero {lyo-y'l | 1=1,2,...9n} (call it my).

and also the maximum of (lxo-x'l } iI=1,2,...40n) (call it Hx).

Consider the ray emanating from ("o'yo) with slope my/ZHx. This
slope §s chosen so that the ray rises very slightly, but not fast
enough to hit any vertices strictly above (x;.¥,). This ray
cannot fntersect any of the vertices (x'.y') of the polygon because
of the way in which my and "x were chosen. This rsy may be
described parametrically as:

R = {(xgeyg) + r(Z’Hx.my): r >0}



By letting r=1 a second point on the ray is:
(x’,y’) = (x°+2Hx-Yo*my)°

The point-in-polygon test can then be reduced to counting the
intersections of the ray R from (xo.yo) through (x’,y’) with atll

of the sides of the polygon [(x'.y').(x'+loy'+l)]. for

f=1,2,...sn. (Here vertex n+l is the same as vertex 1.)

Figure 5. Ray intersections for point-in-polygon test
Counting {ntersections amounts to computing products of

determinants D"(D"-D") and counting non-negative results, where:

(2M) O¢g=xy )
D, =

(my) Yy Yiey!

(2M) (x;=xq)
D" =

(my) (yy-vo)

~
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or one may simply multiply all the products together (using the n
notatton:_n[D"(D"-D")]). Then n[D"(D"-D")] will be negative {f

and only if an odd number of factors are negative.

Conclusions.
The geometric fintuition provided by the point-vector form for line
segment representation, 8long with the collection of algebraic
manipulations presented herein to simplffy line {intersectfion
computations, more than Justify the use of that form to represent
lines and line segments. Many of the problems f{dentified by
Prdfessor Douglas in his paper have been addressed and resolved
by this particular representation. The representation, moreover,
conforms to current computer graphics wisdom and practice which
calls for parametric representation of all curves; for, indeed, this
form gives such a representation of the straight line or line

segment.
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