U.S. Department of Commerce BUREAU OF THE CENSUS
U.S. Department of Housing and Urban Development

H130-85-Q4
issued March 1986

Market Absorption of Apartments

Fourth Quarter 1985-Absorptions (Completions in Third Quarter 1985)

Figure 1.
Units in Apartment Buildings Started, Completed, and Absorbed: 1980 to 1985

Note: Limited to bulldings with five units or more in permit-issuing places.
1 Source: Construction Reports, C20-85-11 (November 1985) table 2.
2 Source: Construction Reports, C22-85-11 (November 1985) table 1.
3 Privately financed, nonsubsidized, unturnished apartments.

Questions regarding these data maybe directed to Charles Clark, Housing Division, Telephone 301-763-2866.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Postage Stamps not acceptable; currency submitted at sender's risk. Remittance from foreign countries must be by international money order or by draft on a U.S. bank. \$11 per year. Additional charge for foreign mailing, $\$ 2.75$. Single copy $\$ 2.50$.

SUMMARY OF FINDINGS

Privately financed, nonsubsidized, unfurnished apartments completed during the July-September 1985 quarter were 64 percent absorbed (seasonally adjusted) 3 months after their completion. This is about the same as the 3 -month seasonally adjusted rate of 65 percent for apartments completed during the second quarter of 1985. Apartments which have been on the market for 9 months, those completed during January-March 1985, were 91 percent absorbed.

The data are based on a sample survey and consequently the figures cited above are subject to sampling variability. As shown in table 3 , the 64 and 91 percent figures are subject to sampling errors (i.e., standard errors) of 1.9 and 1.2 percentage points, respectively. This means that there are about 2 chances out of 3 that a complete count would be in the range of $64(\pm 1.9)$ percentage points and $91(\pm 1.2)$ percentage points. Sampling errors for the figures that follow are indicated in parenthesis.'

A total of $144,500(\pm 7,850)$ apartments were completed during the third quarter of 1985. This is not significantly different from second quarter 1985 completions but is a 14 (± 8.3) percent increase over third quarter 1984 completions. The number of privately financed, nonsubsidized, unfurnished apartments completed ws 97,300 ($\pm 3,990$). This represents about $67(\pm 1.9)$ percent of total apartment completions and is about the same number of apartments as were completed in the second quarter, It is an increase of $35(\pm 7.5)$ percent over completions of similar apartments in the third quarter of 1984.

The median asking rent for newly constructed units was $\$ 430$ (± 6.0) in the third quarter of 1985. This was not significantly different from the $\$ 433$ (± 6.0) median for the second quarter of 1985. Apartments renting for less than $\$ 300$ accounted for only $9(\pm 1.1)$ percent of total completions while those renting for

[^0]$\$ 300$ to $\$ 399$ and those renting for $\$ 400$ to $\$ 499$ accounted for $31(\pm 1.8)$ and $32(\pm 1.9)$ percent, respectively. Apartments renting for $\$ 500$ or more accounted for 28 (± 1.8) percent. A majority of newly constructed apartments, $54(\pm 2.0)$ percent, were built with two bedrooms, while $42(\pm 2.0)$ percent had less than two. Only $3(\pm 0.7)$ percent had three bedrooms or more.

Approximately $40,200(\pm 3,550)$ cooperative and condominium apartments were completed in the third quarter of 1985. Cooperative and condominium apartments accounted for about $28(\pm 3.9)$ percent of total third quarter 1985 completions. The 3 -month absorption rate for cooperative and condominium apartments during the third quarter was $59(\pm 4.3)$ percent. The median asking price for condominium units was $\$ 92,8001 \pm$ 4,100). Like rental units, the majority of newly constructed condominium apartments $-58(\pm 4.3)$ percent-had 2 bedrooms. Unlike their rental counterparts, a relatively high proportion, 17 (± 3.3) percent were built with 3 bedrooms or more.

Units in federally subsidized properties built under programs of the Department of Housing and Urban Development (Low income Housing Assistance (Section 8), Senior Citizens Housing Direct Loans (Section 202), and all units in buildings containing apartments in the FHA rent supplement program) accounted for only $2(\pm 0.7)$ percent of total completions. This continues the decrease in the proportion of federally subsidized apartments being built, and can be contrasted with data from the second quarter of 1981, when 28 percent of all newly built apartments were in federally subsidized buildings.

Furnished rental units accounted for $1(\pm 0.5)$ percent of apartment completions. The remaining $2(\pm 0.7)$ percent of the units are not in scope of the survey and include time-sharing units, continuing care retirement units, and turnkey housing (privately built for and sold to local public housing authorities subsequent to completion). The data on privately financed units include privately owned housing subsidized by State and local governments.

Table 1. Characteristics of Apartments Completed During the Third Ouarter of 1985 and Rented Within 3 Months

*Standard error within range of about 2 chances out of 3 .
(X) Not applicable.

Figure 2.
Median Rent of Apartments Completed in the United States: 1982 to 1985

Note: Limited to buildings with five or more units in permit-issuing places.

Figure 3.
Cooperative and Condominium Apartment Completions as Percent of Total Apartment Completions 1982 to 1985

Note: Limited to buildings with five or more units in permit - issuing places.

SAMPLE DESIGN

The Survey of Market Absorption (SOMA) is designed to provide data concerning the rate at which nonsubsidized and unfurnished privately financed units in buildings with five or more units are rented (or absorbed). In addition, data on characteristics of the units, such as rent and number of bedrooms, are collected.

The buildings selected for SOMA are those included in the Census Bureau's Survey of Construction (SOC) ${ }^{2}$. For this survey, the United States is first divided into primary sampling units (PSU's) which are sampled on the basis of population. Next, a sample of permit-issuing places is selected within each sample PSU. Finally, all buildings within sampled places with five or more units as well as a subsample of buildings with one to four units are selected.

Each quarter, a sample of buildings with five or more housing units in the SOC sample reported as completed during that quarter come into sample for SOMA. Buildings completed in nonpermit-issuing areas are excluded from consideration. Information on the proportion of units absorbed $3,6,9$, and 12 months after completion is obtained for units in buildings selected in a given quarter in each of the next four quarters.
${ }^{2}$ See "Housing Starts," Construction Reports, Series C20, for details of this survey.

Each quarter the absorption data for some buildings are received too late for inclusion in the report. These late data will be included in a revised table in the next quarterly report. (See table 2.)

ESTIMATION

Unbiased quarterly estimates are formed by multiplying the counts for each building by its base weight (the inverse of its probability of selection) and then summing over all buildings. The final estimate is then obtained by multiplying the unbiased estimate by the following ratio estimate factor:

> | total units in $5+\begin{array}{l}\text { buildings in permit-issuing areas } \\ \text { as estimated by the SOC } \\ \text { for that quarter }\end{array}$ |
| :---: |
| total units in $5+\begin{array}{l}\text { buildings as estimated by SOMA } \\ \text { for that quarter }\end{array}$ |

This procedure produces estimates of the units completed in a given quarter which are consistent with the published figures from the Housing Completions Series, ${ }^{3}$ and aiso reduces, to some extent, the sampling variability of the estimates of totals.
${ }^{3}$ See "Housing Completions," Construction Reports, Series C22.

Table 2. Characteristics of Apartments Completed During the Second Quarter of 1985 and Rented Within 3 Months (Revised)

(privately financed, nonsubsidized, unfurnished apartments. Data regarding number of bedrooms and asking rent are collected at the initial interview, i.e., 3 months following completion. Data not seasonally adjusted. Data may not add to total due to rounding. Medians are computed using unrounded data.)

* Standard error within range of about 2 chances out of 3 .
(X) Not applicable.

Table 3. Absorption Rates of Privately Financed Nonsubsidized Unfurnished Apartments: 1982 to 1985

Quarter of completion	Total units completed		Seasonalily adjusted rented within 3 months		Not seasonally adiusted - rented within--									
			3 months	6 montits		9 monthes		12 months						
	Number	Sampling error*			Percent	```Sampling error* (per* centage points)```	Percent	```Sampling error* (p\inr- centage points)```	Percent	```Sampling error* (per- centage points)```	Percent.	$\begin{aligned} & \text { Sampting } \\ & \text { orror* } \\ & \text { (per- } \\ & \text { centage } \\ & \text { poines) } \end{aligned}$	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	$\begin{gathered} \text { Sampling } \\ \text { error* } \\ \text { (per- } \\ \text { centage } \\ \text { points) } \end{gathered}$
: 1992														
January -March........	25,400	1,680	78	3.2	76	3.4	90	2.4	96	1.5	97	1.3		
Aprix -Junt.	30,900	1,800	76	3.1	79	- 2.9	92	1.9	95	1.6	97	1.2		
July-September......	29,900	1,710	72	3.2	73	3.2	85	2.6	92	2.0	96	1.4		
October-December.....	30,800		63		61		80	2.9	90	2.1	95.	1.6		
1983														
January-Marche......	33,100	1,780	61	3.4	59	3.4	81	2.7	90	2.1	94	1.6		
April-June...........	41,600	1,940	65	2.9	69	2.8	87	2.1	93	1.6	96	1.2		
July-September.......	57,200	2,310	74	2.3	76	2.2	87	1.8	93	1.3	96	1.2		
octobex-December....	59,500	2,270	71	2.3	68	2.4	84	1.9	93	1.6	97	1.3		
1984														
January-March........	68,900	2,620	71	2.6	68	2.7	88	1.9	94	1.4	96	1.1		
April-June...........	84,800	3,790	68	2.5	72	2.4	88	1.7	93	1.3	96	0.9		
July-September.......	72,200	3,700	63	2.2	64	2.2	82	1.9	91	1.4	96	0.8		
October-December	87,400	3,730	66	2.0	64	2.0	81	1.6	90	1.0	94	0.8		
1985														
January-March ${ }^{\text {r }}$.	74,800	3,260	67	3.5		2.1	84	1.6	91.	1.2	(NA)	(NA)		
April-Juner ${ }^{\text {r }}$.........	94,200	4,060	65	1.9	68	2.0	85	1.5	(NA)	(NA)	(NA)	(NA)		
July-September......	97,300	3,990	64	1.9	66	1.9	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)		
October-December....														

*Standard error within range of about 2 chances out of 3 . (NA) Not available. Reviseci.

It is assumed that the absorption rates and other characteristics of units not included in the interviewed group or not accounted for are identical to rates for units where data were obtained. The noninterviewed and not-accounted-for cases constitute less than 2 percent of the sample housing units in this survey.

RELIABILITY OF THE ESTIMATES

There are two types of possible errors associated with data from sample surveys: sampling and nonsampling errors. The following is a description of the sampling and nonsampling errors associated with SOMA.

Nonsampling Errors

In general, nonsampling errors can be attributed to many sources: inability to obtain information about all cases, definitional difficulties, differences in the interpretation of questions, inability of unwillingness to provide correct information on the part of respondents, mistakes in recording or coding the data, and other errors of collection, response, processing, coverage, and estimation for missing data.

Sampling Errors

The particular sample used for this survey is one of a large number of possible samples of the same size that could have been selected using the same sample design. Even if the same questionnaires, instructions, and interviewers were used, estimates from each of the different samples would differ from each other. The deviation of a sample estimate from the average of all possible samples is defined as the sampling error. The standard error of a survey estimate attempts to provide a measure of this variation among the estimates from the possible samples and, thus, is a measure of the precision with which an estimate from a sample approximates the average result of all possible samples.

As calculated for this survey, the standard error also partially measures the variation in the estimates due to response and interviewer errors (nonsampling errors), but it does not measure, as such, any systematic biases in the data. Therefore, the accuracy of the estimates depends on both the sampling and nonsampling error measured by the standard error, biases, and some additional nonsampling errors not measured by the standard error.

The sample estimate and its estimated standard error enable the user to construct confidence intervals, ranges that would include the average result of all possible samples with a known
probability. For example, if all possible samples were selected, each of these were surveyed under essentially the same general conditions, and an estimate and its estimated standard error were calculated from each sample, then-

1. Approximately 68 percent of the intervals from one standard error below the estimate to one standard error above the estimate would include the average result of all possible samples.
2. Approximately 90 percent of the intervals from 1.6 standard errors below the estimate to 1.6 standard errors above the estimate would include the average result of all possible samples.
3. Approximately 95 percent of the intervals from two standard errors below the estimate to two standard errors above the estimate would include the average result of all possible samples.

For very small estimates, the lower limit of the confidence interval may be negative. In this case, a better approximation to the true interval estimate can be achieved by restricting the
interval estimate to positive values, that is, by changing the lower limit of the interval estimate to zero.

The average result of all possible samples either is or is not contained in any particular computed interval. However, for a particular sample, one can say with specified confidence that the average result of all possible samples is included in the constructed interval.
The conclusions stated in this report are considered significant at the 95 percent confidence level.

For example, table 1 of this report shows that there were 52,900 apartment with two bedrooms in the third quarter of 1985. The standard error of this estimate is 3,880 . The 68 percent confidence interval as shown by these data is from 49,020 to 56,780 . Therefore, a conclusion that the average estimate derived from all possible samples lies within a range computed in this way would be correct for roughly 68 percent of all possible samples. Similarly, we could conclude that the average estimate derived from all possible samples lies within the interval from 45,140 to 60,660 (using twice the standard error) with 95 percent confidence.
The data in this report are preliminary and subject to slight changes in the annual report.

Table 4. Absorption Rates of Cooperative and Condominium Apartments: 1982 to 1985

Quarter of completion	$\begin{gathered} \text { Total } \\ \text { units completed } \end{gathered}$		Percent of all $5+$ units		Percent absorbed within--									
			3 months	6 months		9 months		1.2 months						
	Number	$\begin{aligned} & \text { Sampling } \\ & \text { error } \end{aligned}$			'per- cent	$\begin{aligned} & \text { Sampling } \\ & \text { error* } \\ & \text { (per- } \\ & \text { centage } \\ & \text { points) } \end{aligned}$	Per.cent	```Sampling error* (per- centage points)```	Percent	```Sampling error* (perm centage points)```	Percent	$\begin{aligned} & \text { Sampling } \\ & \text { error* } \\ & \text { (per- } \\ & \text { centege } \\ & \text { points) } \end{aligned}$	Percent	```Sampling error* (per~ centage points)```
1982														
January-March.	25,600	1,690	37	2.3	57	4.0	69	3.7	76	3.4	81	3.1		
April-June......	27,200	1,740	37	2.2	52	3.9	66	3.7	77	3.3	36	2.7		
July-September.	24,600	1.,640	38	2.4	52	4.1	67	3.8	77	3.4	83	3.0		
October-December.	30;400	1,850.	37	2.1	55	3.7	73	3.3	82	2.8	87	2.5		
1983														
January-march.	20,900	1,590	30	2.2	55	4.6	69	4.2	78	3.8	81	3.6		
Aprid-June.....	20,700	1,620	26	1.9	69	4.4	82	3.7	88	3.1	93	2.4		
July-September...	37,700	2,110	33	1.8	73	3.0	84	2.5	91	1.9	94	1.6		
October-December.	32,500	2;010	30.	1.8	62	3.6	84	2.7	90	2.2	93	1.9		
1984														
January-March....	23,600	2,150	23	2.0	64	4.4	78	3.7		3.3	88	2.9		
April-sune....	38,500	3,290	28	2.0	72	3.8	82	3.2	86	2.9	90	2.5		
July-September.	43,200	3,360	34	2.1	74	3.4	84	2.8	88	2.5	92	1.7		
October-December.	38,400	3,280	28	2.0	64	4.1.	81	3.3	88	2.2	91	1.9		
1985														
January-march ${ }^{\text {r }}$.	32,700	$\begin{array}{r}2,850 \\ \hline\end{array}$	28	2.0	65	4.1	81	3.4	86	3.0	(NA)	(NA)		
Aprid-June ${ }^{\text {a }}$.........	36,700 40,200	3,570 3,550	27	4.3	69	4.5	78	4.0	(NA)	(NA)	(NA)	(NA)		
July-September........	40,200	3,550	28	3.9	59	4.3	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)		

Table 5. Characteristics of Condominium Apartments Completed During the Third Quarter of 1985 and Sold Within 3 Months

 computed usiag unrounded (iataz)

*Standard error within range of about 2 chances out of 3 . ((X) Not applicable.

Table 6. Housing Units Completed in Buildings With Five Units or More: 1982 to 1985

$\begin{gathered} \text { Quarter } \\ \text { of } \\ \text { completion } \end{gathered}$	Total		Unfurnished apartments		Furnished apartments		Cooperatives and condominiumis		Federally subsidized		Ocher ${ }^{1}$	
	Number	Sampling error\%	Number	Sampling error*	Number	Sampling error*	Number	Sampling errore	Number	Sampling error*	Number	Sampling error*
1982											:	
January-March.....	68,500	3,380.	25,400	1,680	1,800	530	25,600	1,690	12,900	1,320	2,800	660
Apri1-June.......	73,000	3,500.	30,900	1,800	1,000	400	27,200	1,740	11,900	1,290	2,000	560
July-September....	64,100	3,260	29,900	1,710	1, 800	530	24,600	1,640	5,500	900	2,400	610
October-December..	82,600	3,730	30,800	1,860	800	350	30,500	1,850	17,700	1,530	2,800	660
1983												
January-March.....	69,200	3,400	33,100	1,780	300	220	20,900	1,590	12,500	1,150	2,400	930
Apri1-June........	80,500	3,680	41,600	1,940	800	350	20,700	1,620	13,400	1,310	4,000	920
July-September....	112,600	4,410	57,200	2,310	1,700	520	37,700	2,110	8,700	1,140	7,300	1,050
October-December..	108,400	4,320	59,500	2,270	1,900	540	32,500	2,000	13,100	1,380	1,400	470
1984												
January-March.....	104,400	5,110	68,900	2,620	1,700	630	23,600	2,150	6,200	1,180	4,000	960
April-June........	138,100	7,260	84,800	3,790	2,700	970	38,500	3,290	9,000	1,750	3,100	1,040
July-September....	126,900	6,940	72,200	3,700	1,700	770	43,200	3,360	9,000	1,740	800	530
October-December..	136,600	7,220	87,400	3,730	3,700	1,140	38,400	3,280	4,300	1,220	2,800	990
1985												
January-March ${ }^{\text {r }}$...	117,900	6,290	74,800	3,260	1,100	590	32,700	2,850	2,500	880	6,800	1,430
Apri1-June ${ }^{\text {r }}$.	138,300	8,040	94, 200	4,060	1,700	850	36,700	3,570	3,300	1,190	2,400	1,010
July-September....	144,500	7,850	97,300	3,990	2,000	890	40,200	3,550	2,400	970	2,600	1,020
October-December..												

* Standard error within range of about 2 chances out of 3 . revised.
${ }^{1}$ Other includes turnkey housing (privately built and sold to local public housing authorities subsequent to completion).

Washington, D.C. 20402

[^0]: 'See Reliability of Estimates on page 5.

