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Abstract

Statistical agencies face a dual mandate to publish accurate statistics while
protecting respondent privacy. Increasing privacy protection requires de-
creased accuracy. Recognizing this as a resource allocation problem, we pro-
pose an economic solution: operate where the marginal cost of increasing pri-
vacy equals the marginal benefit. Our model of production, from computer
science, assumes data are published using an efficient differentially private
algorithm. Optimal choice weighs the demand for accurate statistics against
the demand for privacy. Examples from U.S. statistical programs show how
our framework can guide decision-making. Further progress requires a better
understanding of willingness-to-pay for privacy and statistical accuracy.



National statistical agencies collect information about the population and econ-
omy of a country directly from its people and businesses. They face a dual man-
date to publish useful summaries of these data while protecting the confidential-
ity of the underlying responses. These mandates are enshrined in law and official
practices.1 For example, the Census Bureau is required by Article I of the U.S. Con-
stitution to enumerate the population every ten years and by legislation to publish
data from that census for the purpose of redrawing every legislative district in the
country.2 When providing these data, the Census Bureau is also subject to a legal
prohibition against “mak[ing] any publication whereby the data furnished by any
particular establishment or individual ... can be identified.”3

The fundamental challenge posed in servicing this dual mandate is that as
more statistics are published with more accuracy, more privacy is lost (Dinur and
Nissim 2003). Economists recognize this as a problem of resource allocation. We
propose an economic framework for solving it. Statistical agencies must allocate
the information in their collected data between two competing uses: production
of statistics that are sufficiently accurate balanced against the protection of pri-
vacy for those in the data. We combine the economic theory of public goods with
cryptographic methods from computer science to show that social welfare maxi-
mization can, and should, guide how statistical agencies manage this trade-off.

Figure 1 illustrates our adaptation of the approach proposed by Samuelson
(1954) for the efficient allocation of public goods. The horizontal axis measures
privacy loss parameterized by ε. The vertical axis measures accuracy, parameter-
ized by I. We define both concepts in detail in Section II. The line labeled PF
represents the production function, which describes feasible combinations of pri-
vacy loss and statistical accuracy available to the agency, given its endowment of
data and known mechanisms for publishing. The line labeled SWF is an indif-
ference curve from the social welfare function defined in Section IV. It describes

1The Confidential Information Protection and Statistical Efficiency Act (CIPSEA) (44 U.S. Code
2002) and Census Act (13 U.S. Code 1954) obligate U.S. statistical agencies to protect confidential-
ity.

2Under Public Law 94-171.
313 U.S. Code (1954, Section 9.a.2.).
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Figure 1: Solution to the Planner’s Problem

aggregate preferences for privacy loss and accuracy. The optimal combination
of privacy loss and accuracy is indicated by the open circle. At that point, the
marginal rate of transformation, which measures the cost of increased loss of pri-
vacy, matches the social willingness to accept privacy loss, both measured in units
of increased statistical accuracy.

To date, this social choice framework has not been adapted to help guide sta-
tistical agencies in fulfilling their dual mandate. Our key insight is that formal pri-
vacy systems developed in computer science can characterize the levels of privacy
and accuracy available to a data custodian as a production function. In our model,
a statistical agency uses a known differentially private mechanism to publish official
statistics (Cynthia Dwork, Frank McSherry, Kobbi Nissim and Adam Smith 2006;
Cynthia Dwork 2008; Cynthia Dwork and Aaron Roth 2014). Differential privacy
measures privacy loss by the amount of information about any data record that
is leaked when statistics are published. Differential privacy is very useful for de-
scribing the production technologies available to the statistical agency. However,
formal privacy models shed no light on how to choose the right level of privacy
or accuracy. This social choice question requires the tools of economics.4

4In related contributions from the electronic commerce literature, Hsu et al. (2014) and Ghosh
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Although the approach outlined in Figure 1 is familiar to economists, threats to
privacy from publishing summary statistics may not be. Before discussing techni-
cal details, we discuss in Section I how differential privacy relates to practical, real-
world concerns about confidentiality and data security. We give a plain-language
interpretation of differential privacy and its relationship to the concerns individ-
uals have about protecting whatever sensitive information has been stored in a
database. We also discuss specific data breaches to highlight why statistical agen-
cies and private data custodians are rapidly embracing differential privacy and
other formal privacy-preserving data publication systems.

We model the publication of population statistics in Sections II and III. Section
II focuses on the concepts we borrow from computer science. In Section III, we
interpret differentially-private publication mechanisms through the lens of pro-
ducer theory. We give examples of mechanisms that yield closed, bounded, and
convex production functions relating privacy loss and statistical accuracy. We
define statistical accuracy as the expected squared error between the published
value and the value that would be published in the absence of privacy protection.
In Section IV, we model preferences for privacy protection and accuracy as public
goods and describe their optimal levels using a utilitarian social welfare function.

The issues raised in this paper are far from academic. The threats to privacy
inherent in the “big data” era have affected the policies governing statistical agen-
cies. In September 2017, the bi-partisan Commission on Evidence-based Poli-
cymaking recommended that agencies “[a]dopt modern privacy-enhancing tech-
nologies ... to ensure that government’s capabilities to keep data secure and pro-
tect confidentiality are constantly improving” (Commission on Evidence-Based

and Roth (2015) model market-based provision of statistical summaries for private use by a single
analyst in a setting where individuals can be directly compensated for their associated loss of
privacy. In the context of these private transactions, Hsu et al. (2014) characterize an economic
approach to setting the level of privacy loss. These models, like the formal privacy literature more
generally, do not address the public-good nature of the published statistics and privacy protection
offered by statistical agencies. The fundamental difference in our paper is the development of a
social choice framework that accounts for all the benefits from the published statistics, not just
those accruing to the explicit players as in the Hsu et al. and Ghosh and Roth models, and for
all privacy-loss costs, not just the explicit losses for those who opt-in, because participation in our
data collection is mandatory.
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Policymaking 2017, p. 2). That same month, the U.S. Census Bureau announced
that it will use differential privacy, the leading privacy-enhancing technology, to
protect the publications from its 2018 End-to-End Census Test and the 2020 Cen-
sus.5 Our goal is to develop a principled framework for practical, empirically-
driven, policy guidance regarding the balance of privacy protection and accuracy
in modern statistical systems.

In Section V, we present an illustrative analysis of our framework applied to
the allocation of federal funding to school districts under Title 1. In Section VI, we
interpret several real-world problems in the U.S. statistical system using our so-
cial choice framework: the use of the PL94-171 tabulations to draw new legislative
districts, the use of published inputs from the economic censuses to benchmark
national accounts, the use of tax return data for tax policy modeling, and the publi-
cation of general-purpose micro-data. In each case, we describe the consequences
of altering the weight on statistical accuracy versus privacy loss when facing an
efficient frontier constraining the choices.

The allocation problem we study requires the perspective of economists—both
in developing new theory and in connecting that theory to empirically-driven pol-
icy analysis. Until now, our discipline has ceded one of the most important de-
bates of the information age to computer science.6 In our conclusion, we draw
attention to open questions that we hope will interest and inspire contributions
from economists and other social scientists.

5 See https://www.census.gov/about/cac/sac/meetings/2017-09-meeting.
html (cited on March 12, 2018).

6Privacy-preserving data analysis is barely known outside of computer science. A search for
“differential privacy” in JSTOR’s complete economics collection through December 2017 found
five articles. The same query for statistics journals found six. A search of the ACM digital library,
the repository for the vast majority of refereed conference proceedings in computer science, for the
same quoted keyword found 47,100 results.
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I Key Concepts: Privacy and Accuracy

Defining privacy in a rigorous but meaningful way is particularly challenging. To
this end, we work with the concept of differential privacy. This section explains
how differential privacy relates to both data security and individual privacy. We
also discuss our decision to measure statistical accuracy by expected squared error
loss, and why this choice is not without loss of generality.

I.A Measuring Privacy

Differential privacy is a property of algorithms used to publish statistics from a
confidential database. A differentially private algorithm guarantees that the pub-
lished statistics will not change “too much” whether any observation from the
confidential data is included or excluded. The notion of “too much” is quantified
by a parameter, ε, which measures the maximum difference in the log odds of
observing any statistic across similar databases. For details, see Definition 3.

Differential privacy provides provable limits on an attacker’s ability to re-
identify individual records based on published statistics. Other methods of confi-
dentiality protection are vulnerable to re-identification of large numbers of records
through database reconstruction. We discuss database reconstruction, re-identifi-
cation attacks, and the emergence of differential privacy in Section I.B.2.

Differential privacy can also guarantee individuals that their personal infor-
mation—secrets—will not be blatantly disclosed. Following computer science,
we use the term semantic privacy to refer to the latter sense of privacy protec-
tion. Semantic privacy insures that what an attacker can learn about any person
from published statistics does not depend “too much” on whether their data were
used to compute the statistics.7 In Section IV.A we describe the conditions under
which publication mechanisms guaranteeing ε-differential privacy also guarantee
ε-semantic privacy.

Publication systems that are differentially private are closed under composition,
7 Statisticians will recognize the concept of semantic privacy as directly related to inferential

disclosure (Dalenius 1977; Goldwasser and Micali 1982).
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meaning that the cumulative privacy loss incurred by running multiple analy-
ses on the same database can be computed from the privacy loss bounds on the
component algorithms. Differentially private systems are robust to post-processing,
meaning that the privacy guarantee cannot be compromised by manipulation of
the outputs, even in the presence of arbitrary outside information. Differentially
private systems are future proof, meaning that their privacy guarantees do not de-
grade as technology improves or new data from other sources are published. Fi-
nally, differential privacy systems are public, meaning that all the algorithms and
parameters, except for the random numbers used in the implementation, can be
published without compromising the privacy guarantee. As argued in Abowd
and Schmutte (2015), the public property of differential privacy is a major advan-
tage over traditional statistical disclosure limitation (SDL) because it allows for
verification of the privacy protection and correct inferences from the published
statistics.

There are caveats. While the differential privacy bound is useful for character-
izing production possibilities, its interpretation is different from other economic
variables that are conceptually well-defined but not precisely measurable. Differ-
ential privacy is a nominal bound on the worst-case privacy loss faced by any indi-
vidual. Realized privacy loss depends on the actual data, the published statistics,
and external information that is, or may become, available. We characterize the
statistical agency as choosing how to operate a system that guarantees a bound on
everyone’s privacy loss of ε, and allows verifiable accounting of compliance with
that guarantee.

The worst-case bound in the definition of differential privacy is necessary for
closure under composition. Closure under composition allows the custodian to
compute global privacy loss as ε for the entire set of published statistics. Closure
under composition also preserves the non-rival public-good property of differen-
tial privacy protection. The global privacy protection parameterized by ε is there-
fore the relevant public good that an economic analysis must allocate, not the loss
of privacy experienced by a particular individual after publication of a particular
statistic.
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I.B Data Security and Privacy

It may not be immediately obvious to applied researchers how publishing sum-
mary data can threaten privacy. To motivate our analysis, we describe real-world
violations of data security and situate them within a framework that reflects the
common understanding of confidentiality protection in economics, statistics and
computer science. We defend the premise that blatant breaches of data security—
“hacks”—are unacceptable. The key insight from computer science is that pub-
lication of summary statistics leaks the same kind of private information as a
breach. Differential privacy has emerged as a focal paradigm because it can prov-
ably circumscribe such leakages.

I.B.1 Motivating Examples

For an example of the harms of breaching data security, one need look no fur-
ther than the Census Bureau’s activities in WWII, releasing small-area data for the
purposes of Japanese internment to the Army and providing individual records of
the Japanese Americans in Washington, DC to the Secret Service for purposes of
surveillance (Jones 2017). Statutory barriers now prevent explicit data-sharing of
this sort, and the U.S. Census Bureau staunchly guards those barriers (U.S. Census
Bureau 2002). The Secretary of Commerce’s March 26, 2018 direction to include
a question on citizenship on the 2020 Census in support of providing block-level
data on the citizen voting-age population by race and ethnicity makes the ques-
tion of how best to protect the confidentiality of the micro-data in these publica-
tions even more salient.8 There remains a threat that detailed data on a sensitive
population could be accidentally shared by publishing so much summary infor-
mation that the underlying data can be reverse-engineered. Therefore, statistical
publications should guard against database reconstruction.

Privacy is also threatened by data re-identification. In 2006, Netflix ran a contest
to improve its recommendation system. Netflix released data from its database
of the ratings histories of its subscribers. To protect their users’ privacy, Netflix

8U.S. Department of Commerce (2018).
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removed direct identifiers and then released only a random sample of ratings.
These efforts were not sufficient. Narayanan and Shmatikov (2008) successfully
re-identified a large share of the users in the Netflix Prize data by probabilisti-
cally matching to data scraped from IMDb.com, a crowd-sourced movie review
site. This attack harmed the re-identified users because the attacker learned about
movies they had rated in Netflix that they had not publicly rated in IMDb.9

I.B.2 From Data Breaches to Differential Privacy

To understand why differential privacy has captured the attention of statisticians,
computer scientists, and economists, we elaborate on the concepts of database re-
construction and data re-identification.10 These concepts summarize key ideas from
the literatures on formal privacy and SDL, a complete review of which is beyond
the scope of this paper.11

A reconstruction attack is an attempt to build a record-by-record copy of a con-
fidential database using only statistics published from it. This record-level image
reproduces all the variables that were used in any published statistic to some level
of accuracy. The accuracy depends on how many linearly independent statistics
were published. Call the list of variables subject to reconstruction “list A”. Most
published statistics do not include exact identifiers like name, address, Social Se-
curity Number (SSN), employer identification number, or medical case identifier.
Call this list of identifiers “list B”.

A re-identification attack involves the linkage of records containing variables on
list B to records with variables on list A, either deterministically or probabilisti-
cally. Records that link are called putative re-identifications. They are unconfirmed
claims that some entity on list A belongs to a specific record associated with vari-
ables on list B. A reconstruction attack abets a re-identification attack by facil-

9Garfinkel (2015) provides a more exhaustive overview of re-identification attacks.
10We prefer the term statistical disclosure limitation to anonymization or de-identification. All three

are synonymous. We prefer the term re-identification to de-anonymization, but they also are synony-
mous.

11See Duncan, Elliot and Salazar-González (2011) for a comprehensive review of the SDL litera-
ture. Heffetz and Ligett (2014) summarize differential privacy for economists.
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itating the linkage of external information from list B. It allows the attacker to
compare the data on the reconstructed variables from list A with similar variables
in external databases that also contain some variables from list B, generating pu-
tative re-identifications.

Our use of differential privacy is motivated by the database reconstruction the-
orem due to Dinur and Nissim (2003), which proves that conventional SDL is in-
herently non-private. If the data custodian publishes many linearly independent
statistics, then the confidential database can be reconstructed up to a very small
error. Reconstructing the confidential variables is a data breach. Methods vulner-
able to database reconstruction attacks are called blatantly non-private.12

The database reconstruction theorem sounded the death knell for the SDL
methods typically used by statistical agencies. Statistical agencies consider correct
re-identification to be inherently problematic (Harris-Kojetin et al. 2005, p. 103).
Re-identification attacks can be facilitated by using the information from success-
ful reconstruction attacks on public-use tables and micro-data. Meanwhile, the
amount of auxiliary information available to validate re-identification is rapidly
increasing (Garfinkel 2015). So is the computing power and algorithmic sophisti-
cation needed to carry out these attacks.

I.B.3 Reconstruction and Re-identification in Economic Data

We consider several examples of database reconstruction and re-identification
risks in economic data. One such breach occurred when the Continuous Work
History Sample (CWHS) was released to researchers. Its designers were so ex-
plicit about how the digits in the SSN were used to construct the sample that
a researcher could partially reconstruct valid SSNs known to be in the released

12Legally, whether a reconstruction-abetted re-identification attack constitutes an actionable
data breach depends upon details of the attack. The U.S. government defines a data breach with
reference to personally identifiable information (Donovan 2017, p. 8) as “information that can be
used to distinguish or trace an individual’s identity, either alone or when combined with other
information that is linked or linkable to a specific individual.” The actionable consequences of
a breach by this definition are implemented in agency policies (e.g. Data Stewardship Executive
Policy Committee 2014).
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data (Perlman and Mandel 1944; Mandel 1950; Perlman 1951; Smith 1989). The
researcher could then re-identify individuals using the other variables. The data
were deemed to be in violation of the Tax Reform Act of 1976, and the CWHS files
were recalled (Buckler 1988, p. 56).13

Researchers at the Census Bureau have acknowledged that their tabular publi-
cations may be vulnerable to database reconstruction attacks (Abowd 2016; U.S. Cen-
sus Bureau 2017; Abowd 2017). This recognition is based, in part, on careful anal-
ysis of the statistics in all of the publications from the 2010 Census. More than 7.7
billion unique statistical summaries were published from 309 million persons—25
statistics per person. Each linearly independent statistic is one equation in a sys-
tem that can be used for a record-level database reconstruction. For more details,
see Appendix A.

The county tables in the Quarterly Census of Employment and Wages (QCEW)
released by the Bureau of Labor Statistics (BLS) are also vulnerable to a reconstruc-
tion attack.14 The BLS uses primary and complementary suppression to protect
these tables (Harris-Kojetin et al. 2005, p. 47), but the published summaries are
exactly equal to the summaries from the confidential data. The suppressed cells
can be reconstructed with great precision using the time series of county tables
and known relationships among the cells. Since many of the suppressed cells
contain just one or two business establishments, the reconstruction attack exposes
those businesses to re-identification of their payroll and employment data.

Our last example is a database reconstruction attack that always produces ex-
act re-identification. Genome-wide association studies (GWAS) publish the marginal
distributions of hundreds of thousands of alleles from study populations that are
diagnosed with the same disease. It is possible to determine if a single genome
was used to construct the GWAS with very high precision (Homer et al. 2008; Yu
et al. 2014; Dwork et al. 2015). An attacker who determines that a genome is in the
GWAS learns that it is associated with the diagnosis defining the study popula-

13These are the data used by Topel and Ward (1992).
14Scott H. Holan, Daniell Toth, Marco A. R. Ferreira and Alan F. Karr (2010) published this

attack. Toth is a BLS statistician.
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tion. This is a reconstruction attack because it establishes exact genomes that were
input records for the GWAS. It is a re-identification attack because the attacker
learns the medical case identifier associated with the genome. That association is
unique due to human biology unless the person is an identical twin.15

I.C The Choice of an Accuracy Measure

We define statistical accuracy in terms of expected squared-error loss (Definition
4). One might hope for an analysis where the trade-off between privacy and ac-
curacy is independent of how the statistics are used (for instance, independent of
the prior beliefs of a Bayesian receiver). In that case, for any two publications,
all consumers would agree about the difference in published accuracy. Brenner
and Nissim (2014) show that such universal mechanisms are impossible except
in the special case of publishing a single counting query (Ghosh, Roughgarden
and Sundararajan 2012). In Section III, we characterize several publication mech-
anisms that implicitly define a functional relationship between privacy loss and
squared-error loss. We will also revisit the question of productive efficiency. Be-
fore doing so, we provide the formal, technical definitions of the concepts laid out
in this section.

II Model Preliminaries

We model a trusted custodian—the statistical agency—that controls a database
from which it must publish population statistics. We represent the database as
a matrix with known properties, and the published statistics, called queries, as
functions of the data matrix. These queries represent statistics such as contingency
tables and other standard public-use products.

15National Institutes of Health (2014) revised the NIH rules for sharing genomic data, even when
de-identified in a GWAS, to require active consent: “[t]he final GDS [Genome Data Sharing] Policy
permits unrestricted access to de-identified data, but only if participants have explicitly consented
to sharing their data through unrestricted-access mechanisms.”

11



II.A The Database

The population database is a matrix, D. Each row of D contains information for
one of N individuals, and each column records a separate variable or feature. D

is a multi-set with rows selected from a discrete, finite-valued data domain, χ.16

We denote by |χ| the cardinality of χ. This setup is very general. It can handle
missing data, non-response, skip patterns, alternative sources, unique identifiers,
and other complex features of real data.

II.A.1 Representation of the Database as a Histogram

The histogram representation of D is a |χ| × 1 vector, x ∈ Z∗|χ|, where Z∗ is the set
of non-negative integers. The histogram records the frequency of each feasible
combination of attributes in D. For each element of the data domain, k ∈ χ, xk is
the number of records in D with attribute combination k. The ordering of k ∈ χ is
fixed and known, but arbitrary.

The `1 norm of x is ‖x‖1 =
∑|χ|

i=1 |xi| = N, the number of records in the database.
Given two histograms x and y, ‖x − y‖1 measures the number of records that differ
between x and y. Adjacent histograms are those for which the `1 distance is 1.17

II.A.2 Population Statistics Are Database Queries

Population statistics are functions that map the data histogram to some output
range R. A database query is q : Z∗|χ| → R. We call q(x) the exact query answer.

The sensitivity of a query measures the maximum amount by which the exact
answer can change when D changes by the addition or removal of exactly one
row. The `1 sensitivity for query q is defined as

16In statistics, χ is called the sample space—the list of legal records in the database. Events
that are deemed impossible a priori, structural zeros, can be accommodated in this framework.
The assumption that χ is finite is not restrictive since, in practice, continuous data have discrete,
bounded representations.

17If x is the histogram representation of D, y is the histogram representation of D′, and D′ is
constructed from D by deleting or adding exactly one row, then ‖x − y‖1 = 1.
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Definition 1 (`1 Query Sensitivity)

∆q = max
x,y∈Z∗|χ|,‖x−y‖1≤1

|q(x) − q(y)|.

Sensitivity is a worst-case measure of how much information a given query can
reveal. It is important in our analysis of privacy.

Most official statistical publications can be represented by linear queries. A
linear query is q(x) = qT x where q ∈ [−1, 1]|χ|. A counting query is a special case in
which q ∈ {0, 1}|χ|. Any marginal total from the fully-saturated contingency table
representation of the database can be represented by a linear query. The tables
for legislative redistricting, for example, are among millions of marginal tables
published from the decennial census.

The statistical agency wants to publish answers to a query workload, Q(·) =

{q1(·), . . . , qk(·)}. The exact answer to the query workload on the histogram x is
a set Q(x) = {q1(x), . . . , qk(x)}. In the absence of privacy concerns, the statistical
agency would publish Q(x). When the workload queries are linear, we represent
the workload as a k × |χ| matrix Q, which is the vertical concatenation of the k

scalar-valued linear queries. In this case, with some abuse of notation, we say Qx

is the exact answer to the query workload Q(x).18 We extend Definition 1 to this
setting in Section III.C.1.

II.B The Data Publication Mechanism

As in computer science, we model the data publication mechanism as a stochastic
function.19

Definition 2 (Data Publication Mechanism) LetF be the set of allowable query work-

18It will be obvious from the context whether we are discussing the query workload, Q(·) or its
matrix representation.

19Deterministic mechanisms are implicitly included as a special case, i.e., with probability one.
Only trivial deterministic mechanisms are differentially private—“publish nothing” or “publish
a constant.” The distortion added to the exact query answer through the publication mechanism
should enhance privacy, but will also reduce the accuracy of the published statistics.
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loads. A data publication mechanism is a random function M : Z∗|χ| × F → R whose
inputs are a histogram x ∈ Z∗|χ| and a workload Q ∈ F , and whose random out-
put is an element of range R. For B ∈ B, where B are the measurable subsets
of R, the conditional probability is Pr [M(x,Q) ∈ B|x,Q], given x and Q, where the
probabilities are only over the randomness induced by the mechanism.

II.B.1 Differential Privacy

Our definition of differential privacy follows Dwork et al. (2006) and Dwork and
Roth (2014).

Definition 3 (ε-differential privacy) Data publication mechanism M satisfies ε-dif-
ferential privacy if for all ε > 0, all x, x′ ∈ Nx, all Q ∈ F , and all B ∈ B

Pr [M(x,Q) ∈ B |x,Q] ≤ eε Pr
[
M(x′,Q) ∈ B |x′,Q

]
,

where Nx =
{
(x, x′) s.t. x, x′ ∈ Z∗|χ| and ||x − x′ ||1 = 1

}
is the set of all adjacent his-

tograms of x, and as in Definition 2 the probabilities are taken only over the ran-
domness in the mechanism.20

II.B.2 Accuracy and Empirical Loss

We define accuracy in terms of the squared `2 distance between the mechanism
output and the exact answer Q(x).

Definition 4 (Accuracy (I)) Given histogram x ∈ Z∗|χ| and query workload Q ∈ F ,
the data publication mechanism M(x,Q) has accuracy I if

E
[
‖(M(x,Q) − Q(x)‖22

]
= −I.

20Mechanisms satisfying Definition 3 have several important properties. One that we use heav-
ily is closure under composition, which means that if mechanism M1 is ε1-differentially private
and mechanism M2 is ε2-differentially private, then the combination M1,2 is ε1 + ε2 differentially
private. In our case, the composed mechanism is Q1,Q2 ∈ F and M1,2 ≡ M(x, [Q1,Q2]). For a proof
in the general case see Dwork and Roth (2014, Chapter 3).
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where I ≤ 0 and the expectation is taken only over the randomness in M(x,Q).

The notation ‖·‖22 is the square of the `2 (Euclidean) distance. Accuracy is usually
defined in terms of a positive expected loss, α = −I, rather than in terms of the
additive inverse. We use the additive inverse, I, so we can model accuracy as
a “good” rather than a “bad” in what follows. We make this normalization for
rhetorical convenience, and it is without mathematical consequence.21

III Differentially Private Publication as a Production

Technology

We explicitly characterize the production possibilities facing a statistical agency
that publishes data using a known ε-differentially private mechanism. Doing so
allows the agency to make an explicit guarantee regarding protection against so-
cial privacy loss; that is, to make a verifiable claim about the value of the param-
eter controlling the non-rival public good parameterized by ε. We describe two
illustrative cases in which analysis of the mechanism yields a known technical
relationship between accuracy and privacy loss. Furthermore, the function relat-
ing privacy loss and accuracy may be closed, bounded, and convex. When all
these properties hold, there exists a known marginal rate of transformation be-
tween privacy loss and accuracy. It follows that the level of privacy loss chosen
by the statistical agency entails an associated marginal cost of increasing privacy
measured in units of foregone statistical accuracy.22

21Readers familiar with the computer science literature may wonder why we model accuracy in
terms of the expected loss rather than the worst-case accuracy used, for example, in Dwork and
Roth (2014). Expected squared-error loss is more familiar to economists. Our framework is readily
extended to the other loss measures that appear in the differential privacy literature.

22Our analysis is not meant to be a descriptive, or positive, account of how statistical agencies
or data custodians actually behave. It is explicitly normative.
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III.A The Production of Privacy and Statistical Accuracy

Data publication mechanisms entail some bound on privacy loss (ε) and a level of
statistical accuracy (I). Any mechanism is associated with a pair (ε, I). Following
standard producer theory, we refer to each pair as a production activity. Production
activities usually represent vectors of inputs and outputs such that the inputs can
be transformed into the outputs. Our insight is to think of the information in the
database as akin to an endowment of potential privacy loss. Some of the privacy
loss endowment must be expended by the data custodian to produce population
statistics of any accuracy.

The transformation set, Y , contains all feasible production activities available to
the statistical agency. We assume Y is closed. We also assume inactivity is possi-
ble, but obtaining non-trivial accuracy requires some privacy loss (no free lunch).
Likewise, obtaining perfect accuracy (I = 0) requires infinite privacy loss (ε = ∞).
Under these assumptions, we can represent Y with a transformation function G(ε, I)
such that Y = {(ε, I) |ε > 0, I < 0 s.t. G(ε, I) ≤ 0}} . The production frontier is the set

PF = {(ε, I) |ε > 0, I < 0 s.t. G(ε, I) = 0 } . (1)

Equation (1) yields an implicit functional relationship between ε and I. As a the-
oretical proposition, (1) provides guidance on the constructs at the heart of our
analysis. Its direct implementation is problematic. Given the current state of
knowledge, discussed explicitly in Section III.D, there is no general solution for
G(ε, I). The statistical agency must select the best available technology for the
query workload of interest and implement the G that technology implies. The
agency should be guided by knowledge of recent advances and known impossi-
bility results, but it cannot yet rely on algorithms known to solve equation (1) for
general query workloads.

Scarcity is a key feature of the economic theory of production, often expressed
in the axiom of “no free lunch.” As it turns out, there is no free lunch when
it comes to data privacy. In separate contributions, Dwork and Nissim (2004),
Dwork and Naor (2010), Gehrke, Lui and Pass (2011), and Kifer and Machanava-
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jjhala (2011) all show that publishing useful statistical summaries requires an ex-
plicit loss of privacy. This result holds for any non-trivial definition of formal
privacy including, but not restricted to, differential privacy.

III.B Example: Randomized Response

To build intuition, we offer a brief, but accessible, example of a differentially pri-
vate data publication mechanism known as randomized response (Warner 1965).
The statistic of interest is the population proportion of a sensitive binary charac-
teristic—for example, whether the respondent voted for a particular candidate.
Randomized response protects the individual against privacy loss even when his
“yes” or “no” response can be attributed directly to him. It does so by creating un-
certainty about whether the respondent answered the sensitive question or some
non-sensitive question.

In a survey setting, the respondent draws a sealed envelope. In it, the respon-
dent finds one of two yes/no questions. The interviewer records the response,
but does not know, and cannot record, which question was answered.23 The data
analyst knows only that the envelope contained the sensitive question with prob-
ability ρ and an innocuous question with probability 1 − ρ.

Randomized response guarantees privacy to everyone. Those who answer the
sensitive question can be assured that no one, including the interviewer, knows
their response with certainty. We can measure the amount of information leaked
about the sensitive characteristic. Finally, privacy increases with the probability
that the innocuous question is asked. However, this also increases the uncertainty
about the distance between the published statistic and the population proportion
of the sensitive characteristic.

To formalize randomized response in terms of the model of this paper, suppose

23The sensitive data can also be collected automatically by a web browser, which performs the
randomization in the background before transmitting information to an analyst. This approach
is formalized in a tool known as Randomized Aggregatable Privacy-Preserving Ordinal Response
(RAPPOR), and used by Google’s Chrome browser to detect security problems (Erlingsson, Pihur
and Korolova 2014; Fanti, Pihur and Erlingsson 2015).
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the population database consists of two vectors x and z. Each entry xi is a binary
indicator corresponding to the sensitive trait for i. Each entry zi corresponds to the
non-sensitive trait. The statistical agency publishes a vector d that is conformable
with x by randomizing over whether it reports the sensitive or the non-sensitive
characteristic. Let Ti be a Bernoulli random variable that determines which entry
is reported. The published value di = Tixi + (1 − Ti)zi. To complete the description,
denote ρ = Pr [Ti = 1] and µ = Pr [zi = 1]. To make privacy guarantees, we require
0 < ρ < 1. We also assume that zi is independent of xi. For convenience, we assume
µ = 0.5.24

Since the randomization is independent for each entry i, we can restrict atten-
tion to the conditional probabilities

Pr [di = 1|xi = 1] = ρ + 0.5(1 − ρ) (2)

Pr [di = 1|xi = 0] = 0.5(1 − ρ). (3)

Differential privacy bounds the ratio of these two probabilities as well as the ratio
associated with the event di = 0. Randomized response is ε-differentially private
with

ε(ρ) = log
(
1 + ρ

1 − ρ

)
. (4)

Semantic, or inferential, privacy concerns what can be learned about the sensitive
characteristic conditional on what is published, Pr [xi = 1|di]. By Bayes’ rule, the
bound in (4) also applies to posterior inferences about the sensitive characteristic
(see Appendix B).

The goal of the analysis is to draw inferences about the population proportion
of the sensitive characteristic. Define β̂ = 1

N

∑
i di, the empirical mean proportion

of ones in the published responses, and π = 1
N

∑
i xi, the (unobserved) mean of the

sensitive characteristic. Finally, define π̂ (ρ) =
β̂−µ(1−ρ)

ρ
, which is an unbiased estima-

tor of π with variance Var[̂π (ρ)] =
Var[̂β]
ρ2 . Therefore, accuracy is: I(ρ) = −Var[̂π (ρ)].

24The justification for, and implications of, this assumption are elaborated in Appendix B. This
assumption is without consequence for our illustration.
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In Appendix B we also show dI
dε > 0 and d2I

dε2 < 0. Therefore, the technical relation-
ship between privacy-loss (ε) and accuracy (I) is strictly increasing and concave.

III.C Example: Matrix Mechanism

For the rest of the paper, we consider a statistical agency that publishes statis-
tics using the matrix mechanism introduced by Chao Li, Gerome Miklau, Michael
Hay, Andrew McGregor and Vibhor Rastogi (2015). Unlike randomized response,
which operates directly on the micro-data record, the matrix mechanism is a gen-
eral class of data-independent mechanisms that protect privacy by adding noise
to the exact query answers that is calibrated to the query workload sensitivity. The
matrix mechanism is also under active development for use by the Census Bureau
(McKenna et al. 2018; Kuo et al. 2018). Our analysis is generally valid for all dif-
ferentially private mechanisms that yield a convex relationship between privacy
loss and accuracy.25

III.C.1 The Matrix Mechanism

To introduce the matrix mechanism, we first describe the simpler Laplace mecha-
nism operating on a query workload. Dwork et al. (2006) proved the single query
version of the Laplace mechanism, which Li et al. (2015) generalized to a matrix
workload. We state the matrix version with new notation: ∆Q in Theorem 1 is
the generalization of `1-sensitivity for the query workload (defined formally in
Appendix C).

25In previous versions of this paper, we have considered data-dependent mechanisms, including
the Multiplicative Weights Exponential Mechanism (MWEM) introduced by Moritz Hardt, Katrina
Ligett and Frank McSherry (2012) and the Private Multiplicative Weights (PMW) mechanism, due
to Moritz Hardt and Guy N. Rothblum (2010). While these mechanisms also yield well-behaved
relationships between privacy and accuracy, their dependence on the data means their accuracy
guarantees can only be stated in terms of the worst-case absolute error across all queries, not the
expected square-error accuracy measure we focus on in this paper. This reinforces our observation
that the definition of accuracy is not without loss of generality.
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Theorem 1 (Laplace Mechanism) For ε > 0, query workload Q, and histogram x, de-
fine data publication mechanism Lap(x,Q) ≡ Qx + e, where e is a conformable
vector of iid samples drawn from the Laplace distribution with scale parameter
b =

∆Q
ε

. Lap(x,Q) is ε-differentially private.

For the proof, see Li et al. (2015, prop. 2). The amount of noise added by the
Laplace mechanism increases with the workload query sensitivity ∆Q and de-
creases with ε.26

The matrix mechanism improves on the Laplace mechanism by finding a query
strategy matrix A, conformable with Q, such that each query in Q can be expressed
as a linear combination of queries in A. The idea is to find a strategy matrix A with
lower sensitivity than Q, thereby allowing greater accuracy for any particular level
of privacy loss.

Theorem 2 (Matrix Mechanism Implemented with Laplace Mechanism) For histogram x,
query workload Q, query strategy A, and ε > 0, the matrix mechanism M(x,Q)
publishes Qx + QA+ (∆A) e, where e is a vector of iid Laplace random variables
with mean zero and scale parameter b = 1/ε.

1. Privacy: The matrix mechanism is ε-differentially private.

2. Accuracy: The matrix mechanism has accuracy I = −Var(e) (∆A)2
‖QA+‖

2
F ,

where A+ is the Moore-Penrose inverse of A, ∆A is the generalization of `1-
sensitivity for the query workload (see Appendix C). The notation ‖·‖F refers
to the matrix Frobenius norm, which is the square root of the sum of the
absolute squared value of all elements in the vector or matrix between the
braces (Golub and Van Loan 1996, p. 55).

For the proof, see Li et al. (2015, prop. 7).27

26A Laplace random variable—called “double exponential” by statisticians—has density
(1/2b) exp(−|x|/b) on the real line with E [e] = 0 and Var [e] = 2b2. It is more peaked and has fatter
tails than the normal distribution (Dwork and Roth 2014, p. 31). Its discrete equivalent is called
the geometric distribution, and the associated geometric mechanism is also differentially private
(Ghosh, Roughgarden and Sundararajan 2012, p. 1674-5).

27The strategy matrix A is not hypothetical. Li et al. (2015, p. 768-78) provide examples with and
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When the queries in A are answered using the Laplace mechanism, the implied
marginal cost of increasing accuracy I in terms of foregone privacy protection ε—
the marginal rate of transformation—is

MRT ≡
dI
dε

= −
∂G/∂ε
∂G/∂I

=
4 (∆A)2

‖QA+‖
2
F

ε3 . (5)

The marginal rate of transformation is positive because privacy loss is a public
bad.28

III.D Efficiency in Production

We would like to know whether the matrix mechanism provides maximal accu-
racy for any choice of ε, or if it is possible to achieve greater accuracy. For mecha-
nisms involving multiple linear queries, Hardt and Talwar (2010) established up-
per and lower bounds on the variance of the noise added to achieve privacy. Their
lower bound result implies there is a maximal attainable level of accuracy for any
mechanism providing ε-differential privacy. They also established the existence
of a differentially private mechanism, the K-norm mechanism, that approximately
achieves maximal accuracy.29 In principle, our matrix mechanism could be oper-
ated with the K-norm mechanism instead of the Laplace mechanism. However,
there is no closed-form solution for accuracy when using the K-norm mechanism,

without side constraints of algorithms that successfully choose A. Ryan McKenna, Gerome Miklau,
Michael Hay and Ashwin Machanavajjhala (2018) demonstrate the feasibility of computing A for
large query workloads like those found in decennial censuses by exploiting Kronecker products.
Nevertheless, we acknowledge that for general, large, linear query workloads, the computation of
a solution for A is an unsolved problem.

28The MRT is not hypothetical. The accuracy guarantee in Definition (4) is exact. The production
function is exact in the two public goods. The requirements dI/dε > 0 and d2I/d2ε < 0 can be
verified by substituting Var(e) = 2/ε2 and differentiating. The matrix mechanism can be operated
with any data-independent mechanism, such as the geometric mechanism, replacing the Laplace
mechanism in its definition.

29Their results were subsequently refined and extended by Nikolov, Talwar and Zhang (2013)
and Bhaskara et al. (2012).
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and it is computationally burdensome.30

IV Preferences for Privacy and Social Choice

In this section we formally relate the definition of differential privacy to a seman-
tic interpretation of privacy as the protection of individual secrets. We then de-
velop a basic model of preferences for privacy and accuracy. We also derive the
formal statement that the optimal levels of privacy protection and accuracy are
determined by setting the marginal rate of transformation equal to the marginal
willingness to accept privacy loss.

IV.A Differential Privacy as a Bound on Learning

Following Kifer and Machanavajjhala (2012), we describe necessary and sufficient
conditions under which differential privacy implies a bound on what an attacker
can learn about any person’s sensitive data from published statistics. We call this
the semantic privacy bound. We call the sensitive data items secrets. A secret pair
consists of two mutually exclusive events—si and s′i . The event si means the record
for individual i was included in the database and has attribute χa. The event s′i
means the data for i was not included in the database.

Suppose the statistical agency publishes statistics using a ε-differentially pri-
vate mechanism. Semantic privacy is the change in the odds of si versus s′i for an
attacker before and after the statistics are published. Inference requires a model
of the random process that generates the database, Pr [D | θ]. It is characterized
by a parameter θ, and that the sampling probabilities for all individuals are inde-
pendent of one another.31 Applying Bayes’ law to Definition 3 and using the data

30Computer scientists acknowledge the practical need to trade off computational costs against
privacy and accuracy (Vadhan 2017, p. 50). We use the Laplace mechanism instead of the K-norm
mechanism among data independent mechanisms for this reason.

31See Appendix D for details.
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generating process in Appendix equation (D-13), differential privacy implies

e−ε ≤
Pr[si |B, θ]
Pr[s′i |B, θ]

/
Pr[si |θ]
Pr[s′i |θ]

≤ eε. (6)

For the proof, see Theorem 6.1 in Kifer and Machanavajjhala (2012).32

Equation (6) says that when the agency publishes using an ε-differentially pri-
vate mechanism, the Bayes factor associated with any secret pair is bounded by
the same ε. The semantics depend on the data generating process, and the condi-
tioning on θ is nontrivial. As Kifer and Machanvajjhala show, the data generating
process in equation (D-13) is the only one for which mechanisms satisfying differ-
ential privacy generate semantics satisfying equation (6).

Being able to move between the bounds on the mechanism and the bounds on
the privacy semantics is critical to applying differential privacy to the social choice
problem in this paper. When we derive technology sets, these bounds constrain
the feasible pairs (ε, I); hence, the ε bounds on the mechanism implied by the def-
inition of differential privacy (Definition 3) are important. When we model pref-
erences for (ε, I), individuals care about the mechanism’s ability to protect secrets
learned from the published statistics; hence, the ε semantic bounds in equation (6)
matter.

32Privacy semantics were defined as ε-indistinguishability, by Dwork (2006), one of the original
differential privacy papers. This inference system is not Bayesian learning, and for our case, gen-
erates a semantic bound that is also [−ε, ε] even though it is defined over arbitrary data generating
processes. Kasiviswanathan and Smith (2014) also generate a semantic bound that can be com-
puted from the differential privacy bound without assumptions on the data generating process.
Wasserman and Zhou (2010) have given an interpretation of differential privacy as bounding the
power of a statistical test of the null hypothesis about the value of a secret. Nissim et al. (2018,
Section 4.3) provides an extremely lucid non-technical description of privacy semantics in terms
of posterior-to-posterior comparisons.
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IV.B Modeling Preferences over Privacy and Accuracy

We assume the statistical agency chooses ε and I to maximize a utilitarian social
welfare function

S WF (ε, I) =
∑

i

vi (ε, I) (7)

subject to the restriction that it operates along the production frontier (1). The
functions vi (ε, I) measure indirect utility for each person i. Indirect utility depends
on the levels of ε and I. Our formulation allows for arbitrary heterogeneity in
preferences for both privacy loss and statistical accuracy. In doing so, we allow
for the standard case in which one group cares only about privacy, while another
group cares only about accuracy. Following Nissim, Orlandi and Smorodinsky
(2012), we assume utility is additively separable into information utility and data
utility: vi (ε, I) = vIn f o

i (ε) + vData
i (I).33

IV.B.1 Information Utility

First, we specify individual information utility—preferences for privacy. Our ap-
proach is motivated by Ghosh and Roth (2015). Suppose that Ω is the set of future
events, or states of the world, over which an individual has preferences. These are
states of the world that may become more likely if confidential information in the
database is disclosed. This might correspond to identity theft, the threat of being
persecuted for a particular trait, or denial of a health insurance claim.

Let individual i’s utility from event ω ∈ Ω be ui(ω). The individual’s data
may be used in an ε-differentially private mechanism M(x,Q) with output drawn
from range R according to the distribution induced by the mechanism. Finally,
let z(M(x,Q)) be an arbitrary function that maps the published outcome of M onto
a probability distribution over events in Ω. As discussed in Section I.A, differen-
tial privacy is invariant under post-processing. It follows that the transformation
z(M(x,Q)) is also ε-differentially private because z only uses outputs of M.

33There is no obvious consumption complementarity between privacy and accuracy in the setup
we consider. This assumption could be violated if, say, accuracy indirectly affects utility by increas-
ing wealth or by decreasing the prices of physical goods.
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From the individual’s perspective, what matters is the difference between what
can be learned about their secrets when their information is included in the data, x,
and when it is not. Let x′ denote the neighboring histogram that excludes i’s data.
By differential privacy, i’s expected utility satisfies Eω|M(x,Q) [ui(ω)]≤ eεEω|M(x′,Q) [ui(ω)].
The worst-case incremental utility loss from having their data included in the
mechanism, is (eε − 1) vi where vi is the expected utility over future events when
i’s data are not included in the mechanism. This argument supports a model of
preferences in which ε enters linearly.34 Following Ghosh and Roth (2015), we
assume vIn f o

i (ε) = −kiε where ki ≥ 0 to reflect that privacy loss measured by ε is a
public “bad.”35

IV.B.2 Data Utility

Next, we introduce a model that supports a reduced-form specification for data
utility that is linear in accuracy: vdata

i (I) = ai + biI. Our simple, but illustrative,
model is a proof-of-concept. We hope to inspire further investigation of prefer-
ences for public statistics, since there is very little existing research on which to
draw.36

We associate the data utility for any person with her expected utility of wealth
given her knowledge of the publication system. To model this expectation, we
assume wealth depends on the statistics published by the statistical agency, and
that individuals are aware that error is introduced by the privacy protection sys-
tem. More concretely, each person i gets utility from wealth according to a twice-

34When ε is small, ε ≈ eε − 1. Ghosh and Roth (2015) consider a broader class of information
utility models, of which the linear model as a special case

35Nissim, Orlandi and Smorodinsky (2012) observe that the framework in Ghosh and Roth
(2015) is an upper bound and that expected utility loss may be lower. They show that know-
ing the upper bound is sufficient for certain problems in mechanism design. The presence of ε in
the utility function could also reflect the consumer’s recognition that the statistical agency applies
the same value of ε to everyone. We would assume they have preferences over this property of
the mechanism. In this case, the connection to expected harm from breaches of their secrets would
not be as direct.

36Spencer (1985); Spencer and Moses (1990) and Spencer and Seeskin (2015) attempt to measure
the social cost of inaccuracy of official statistics. The statistics literature generally defines data
“utility” via a loss function. See, e.g., Trottini and Fienberg (2002).
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differentiable and strictly concave function, Ui(Wi). We let Wi = ΠT
i M(x,Q), where

M(x,Q) is the vector of published population statistics and Πi is a person-specific
vector of weights. We require only that the entries of Πi be finite. As described
in Theorem 2, M(x,Q) = Qx + Q(∆A)A+e where A is a query strategy matrix with
pseudo-inverse A+ and e is a vector of iid random variables with E [e] = 0 and
whose distribution is independent of x, Q, and A.

The query set Q and the distribution of e are public knowledge—a key feature
of differential privacy. Hence, uncertainty is with respect to the data histogram x

and the realized disturbances e. Beliefs about the distribution of x may be arbitrary
and person-specific. The expected utility for any person i is

E [Ui(Wi)] = Ex

[
Ee|x

[
Ui

(
ΠT

i Qx + ΠT
i QA+(∆A)e

)
|x
]]
.

In Appendx E, we show this can be approximated as

E [Ui(Wi)] ≈ Ex

[
Ui(ΠT

i Qx)
]
−I ·

{
1
2Ex

[
U′′i (ΠT

i Qx)
] ‖ΠT

i QA+‖
2
F

‖QA+‖2F

}
≡ ai +I · bi.

(8)

We obtain this result by taking expectations of a second-order Taylor series ap-
proximation to i’s utility around e = 0. Our derivations and the result that ex-
pected utility is decreasing with the variance of wealth are familiar from the lit-
erature on risk aversion (Eeckhoudt, Gollier and Schlesinger 2005, see ch. 1). The
final expression highlights that from the planner’s perspective, all that matters are
person-specific weights associated with the utility of data accuracy. We proceed
with a reduced-form model for data utility that is linear in accuracy: vdata

i (I) =

ai + biI.

IV.B.3 Equilibrium

Assuming the indirect utility functions are differentiable, the conditions that char-
acterize the welfare-maximizing levels of ε and I subject to the feasibility con-
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straint are
∂G(ε0,I0)

∂ε

∂G(ε0,I0)
∂I

=

∂
∂ε

∑
i vIn f o

i

(
ε0

)
∂
∂I

∑
i vData

i
(
I0) =

∑
i ki∑
i bi

=
k̄
b̄
. (9)

The left-hand side of equation (9) is the marginal rate of transformation based on
the production frontier while the right-hand side is the marginal rate of substitu-
tion between privacy loss and accuracy. We also refer to this as the willingness to
accept privacy loss measured in units of statistical accuracy.

To choose privacy and accuracy, an agency needs to know the marginal rate
of transformation and the willingness to accept as shown in (9). It must solve for
the efficient query strategy A.37 Once it does, it knows the marginal rate of trans-
formation at any point. The choice then depends on two unknown quantities: the
average preference for privacy in the population (k̄) and the average preference
for accuracy (b̄). In Section V, we calibrate these quantities in an analysis that
illustrates the strengths and drawbacks of our approach.

IV.C Accuracy and Privacy Protection Are Public Goods

In our model, ε and I are public goods. Once the statistical agency sets these pa-
rameters, all individuals enjoy the same statistics and privacy protection. How-
ever, our framework allows each person to have different preferences for privacy
loss and accuracy.38 It is natural to treat accuracy of official statistical publications
as being both non-rival and non-excludable in consumption (Acquisti, Taylor and
Wagman 2016). Hsu et al. (2014) and Ghosh and Roth (2015) model the provision
of statistical summaries for use by a private analyst. Neither paper acknowledges
the public-good nature of either the published statistics or the privacy protection
afforded by the database custodian.

37The choice of query strategy A depends on the query workload, Q, the statistics of interest
from the data collection, and the differentially private mechanism that will be used to answer A.
See Li et al. (2015) for details.

38If statistical accuracy is an input to production, consumer utility also depends on accuracy
indirectly through prices. Note, too, that our approach is distinct from much of the economics of
privacy research that considers how companies elicit information about consumers’ idiosyncratic
preferences and thereby engage in price discrimination (Odlyzko 2004).
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That privacy protection is a public good was foreshadowed by Dwork (2008,
p. 3) when she wrote: “[t]he parameter ε ... is public. The choice of ε is essentially
a social question.” This observation has not previously made its way into models
of the market for privacy rights. All persons receive the same guarantee against
privacy loss, ε. That is, all persons participate in a data collection and publication
system wherein the privacy-loss parameter is set independent of any characteris-
tics of the population actually measured. This is our interpretation of the “equal
protection under the law” confidentiality-protection constraint that governs most
national statistical agencies. In addition, the benefits from increased privacy pro-
tection for any individual in the population are automatically enjoyed by every
other individual, whether that person’s information is used or not—the privacy
protection is therefore strictly non-rival.

The public scrutiny of government statistical agencies create strong incentives
to emphasize privacy protection (National Academies of Sciences, Engineering,
and Medicine 2017, Chapter 5). In practice, an agency’s choice is governed by
legal, economic, and political considerations. One might reasonably ask “Why
should the privacy bound ε arrived at by a statistical agency for reasons related to
policy or legislation be the quantification of privacy loss relevant to economic ac-
tors? In environments where privacy loss is largely determined by a much smaller
population of uniques or of people particularly susceptible to re-identification,
features of that subpopulation might be all that determines the privacy-accuracy
production function.”39 This argument is flawed by its failure to acknowledge that
in all statistical databases of which we are aware every single row is unique.40

When all data are unique, deciding how to publish meaningful statistics in-
volves choices that compromise the privacy of some sub-populations more than
others. Conventional SDL attempts to present summaries with granularity in one
dimension (say detailed geography) and similar summaries in another dimen-
sion (say detailed racial categories) without having to account for the risk in the

39We are grateful to an internal reviewer at the Census Bureau for providing this argument.
40For instance, in databases of households, the household address is geocoded to its GPS coor-

dinates. In databases of businesses, detailed geography and industry codes uniquely distinguish
firms.
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cross-classification (detailed geography by detailed race categories). The database
reconstruction theorem exposes the vulnerability in that practice. If every record
is really a population unique, then publication mechanisms that are closed under
composition are necessary to keep track of the exposure from the cumulative set
of published statistics. Such mechanisms require worst-case analysis. And this
worst-case analysis means privacy protection is a non-rival public good.

V Example: Title 1 School Funding Allocations

Our first application is the allocation of federal funding to school districts under
Title I. If statistics on the number of Title I-eligible students in each school dis-
trict are published using a differentially private mechanism, then funding will be
misallocated due to the error induced by the mechanism. However, publishing
those statistics without protection compromises privacy. We show how this social
choice problem could be managed in practice.

V.A Setting

Title I of the Elementary and Secondary Education Act of 1965 provides fed-
eral funding to help improve educational outcomes for disadvantaged students.
Funds are appropriated by Congress and then allocated to school districts based
on need. That need is determined, in part, using statistics published by the Census
Bureau.

Sonnenberg (2016) describes how Title I allocations are determined. The Department
of Education (DOE) allocates basic grants using a formula that depends on A` =

E` × C`, where A` is the authorization amount for school district `, E` is the eligi-
bility count, and C` is the adjusted State Per-Pupil Expenditure (SPPE). To keep the
analysis focused on the core privacy-accuracy trade-off, we assume this formula
determines total funding to district ` and that C` is known with certainty, but the
DOE must use a published count of Title I-eligible students Ê` that may differ
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from the true count due to privacy protection.41

The DOE is supposed to allocate X =
∑L
`=1 E` × C` dollars under Title I, but

the actual allocation will be X̂ =
∑L
`=1 Ê` × C`. The policy challenge is to balance

privacy loss among disadvantaged households against the misallocation of Title I
funds.

V.B The Social Choice Problem

We assume the Census Bureau has data on the complete population of school age
children that includes two fields: the school district and an indicator for whether
the child counts toward Title I eligibility. It publishes privacy-protected counts
of the total number of Title I-eligible children in each district using the matrix
mechanism of Theorem 2. The mechanism returns Ê` = E` + e` where e` is Laplace
noise. By Theorem 2, the published counts satisfy ε-differential privacy.42 We also
know the accuracy is:

I = −E

 L∑
`=1

(
Ê` − E`

)2
 = −

2L
ε2 (10)

where L is the total number of school districts.43

Suppose policymakers’ choices are guided by a variant of the social welfare

41To be very clear, this does not describe the actual data collection or statistical disclosure prac-
tices currently used by the Census Bureau. Our example also abstracts from other types of non-
survey error. These considerations are important, as Manski (2015) correctly argues. Our analysis
shows that errors from privacy protection can be meaningful, even in the absence of other concerns
about data quality.

42Because school districts do not overlap, the query workload sensitivity for the entire country
is the same as the sensitivity for a single district—namely 1. The guarantee of ε-differential privacy
is the same for each district separately—a property called parallel composition. The privacy loss for
a student in one school district is not affected by what is guaranteed to students in other districts.
This does not mean that learning the number of Title I students in district A is uninformative about
Title I status of students in district B. If the districts are neighboring, the statistical outcomes may
be correlated, and differentially private mechanisms permit learning about this correlation.

43Adding Laplace noise can result in published counts that are non-integer and potentially neg-
ative. Edits to enforce range restrictions—either by the Census Bureau prior to publication, or by
the Department of Education prior to use—have only minor consequences for this analysis. The
postprocessing does not affect the privacy guarantee, but it can affect the accuracy. See Li and
Miklau (2012).
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function studied in Section IV. Specifically:

S WF = φ
∑

i

vIn f o
i (ε) + (1 − φ)vData(I), (11)

where the first summand on the right-hand-side reflects the linear aggregation
of individual utility from privacy loss, and the second summand reflects the so-
cial cost of misallocating funds. The parameter φ, which is new, is the weight on
privacy in total welfare.

As in Section IV.B.1, let vIn f o
i (ε) = −kiε reflect the incremental loss to util-

ity for person i associated with having her data used in a publication with pri-
vacy guarantee ε. Regarding vData(I), the social planner’s preferences are linear-
quadratic in the aggregate misallocation W = (X̂ − X) =

∑L
`=1 C`

[
Ê` − E`

]
so that

vData(I) = I
∑L
`=1

C2
`

L .44 Following (9), the social planner’s willingness to accept pri-
vacy loss is

WT A ≡
dI
dε

= η

∑N
i=1 ki

C2
= ηN

k̄

C2
, (12)

where C2 =
∑L
`=1 C2

`

L is average squared SPPE across districts, k̄ =
∑N

i=1 ki

N represents
the average disutility from privacy loss across students, and N is the number of
students. The parameter η = φ/(1 − φ) measures the relative weight on privacy in
the social welfare function.

V.C Solution and Calibration

To establish a benchmark measure of WTA, we draw on the Common Core of
Data (CCD) 2014—2015 (National Center for Education Statistics 2014). There are
around L = 13, 000 public school districts and N = 46 million school-age children.
Following Sonnenberg (2016), we calculate the adjusted SPPE for each district.

44Here, we assume the planner has a distaste for misallocation. We could instead adopt a more
general model for data utility following the analysis in Section IV.B.2 that would associate the
planner’s preferences for accuracy with the expected utility of each district. Doing so would add
another set of utility parameters to model and calibrate and distract from our primary goal of
offering a simple, stylized illustration of the approach developed in this paper.
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The average squared SPPE, C2, is approximately 20 million.45

Completing the calibration requires information on preferences for privacy. In
the Ghosh and Roth (2015) model, the privacy preference ki is a measure of the
loss associated with states of the world that become more likely when data are
published. We posit the cost of identity theft as a reasonable reference point. We
therefore set k̄ = $1, 400 based on a Department of Justice estimate of the direct
and indirect losses for victims of identity theft who lost at least one dollar (Harrell
2017).46 Hence, WT A = η × 1400 × 2.3 = η × 3220.

Setting WT A = MRT and making all relevant substitutions, ε = 2.52 × η−
1
3 . We

report the cost of misallocation as the root mean squared error (RMSE) in expected
allocation across districts.47 The RMSE is measured in dollars per school district,
so is comparable to other district-level expenditures.

We compare some benchmark models that place different relative weight on
allocative efficiency. If privacy and accuracy are valued symmetrically, so η = 1,
the optimal level of privacy loss is ε∗ = 2.52, and the RMSE in allocations across
districts is approximately $2,509. This reflects a misallocation cost of about 70
cents per student. One might favor greater allocative efficiency, since the cost of
misallocation affects everyone in the population. We might set η = N

POP−N ≈ 0.15,
where POP is the total U.S. population. Then ε∗∗ = 4.74 and allocative inefficiency
is just $1,334, or approximately 38 cents per student.

Privacy advocates typically recommend values for ε that are less than 1 and
much closer to zero (Dwork and Roth 2014). If we target ε0 = 0.1, the RMSE in
allocations across districts is approximately $63,000. At roughly 18 dollars per
student, the same amount would cover the cost of lunch for seven days.48 The

45Using the CCD, we deduct federal outlays from total state education expenditures and divide
by average fall daily attendance to get unadjusted SPPE. These are scaled down and truncated to
get the adjusted SPPE according to the process described by Sonnenberg (2016). We then match
each district to the adjusted SPPE of its home state.

46Technically, the estimated cost of identity theft reported by Harrell (2017) is $1,343. In keeping
with our goal of offering a simple, stylized analysis, we round up to the nearest hundred dollars.

47RMS E =

√
E

[
L−1 ∑L

`=1 C2
`

(
Ê` − E`

)2
]

=
√
−L−1C2I.

48Based on a $2.28 average cost per school lunch (U.S. Department of Agriculture, Food and
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implied η is around 12,000.

VI Application to Current Statistical Programs

Our analysis focuses on how statistical agencies can optimally choose publication
strategies that balance privacy and accuracy in a disciplined manner. However,
most statistical agencies are not yet using formal privacy protection systems. In
this section, we describe how the tools and concepts developed in this paper may
be brought to bear on several real-world problems confronting the U.S. statistical
system.

VI.A Legislative Redistricting

The Census Bureau is required to provide geographically detailed counts of the
population to assist states in drawing legislative districts in compliance with the
Equal Protection Clause of the 14th Amendment of the U.S. Constitution and pro-
visions of the 1965 Voting Rights Act. These PL94-171 redistricting statistics pro-
vide block-level population counts including data on race and ethnicity as man-
dated by the Office of Management and Budget (1997). The Census Bureau applies
SDL to these tabulations; however, the procedures used the 2000 and 2010 Cen-
sus, and those proposed for the 2018 End-to-End Census Test, do not protect the
counts of total or voting-age population at any level of geography, including the
block.49 In implementing the amendments to the Census Act, the Census Bureau
has acted as if the social welfare function put all the weight on accuracy when
drawing fresh legislative districts. However, it has given weight to privacy pro-
tection in publishing the statistics used to enforce the Voting Rights Act.

An attacker with the information set posited in equation (6) can always cor-
rectly determine the census block of the person missing from that information
set. Secret pairs like “Bob lives on block 1” versus “Bob is not in the database”

Nutrition Research Service, Office of Research, Nutrition and Analysis 2008).
49See Appendix A for the legislative and statutory background.
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cannot be protected whereas secret pairs like “Bob is white (in the data)” versus
“Bob left the race questions blank (in the data)” can. The absence of any provable
privacy guarantee on the block-level geocode means it is impossible to provide
any meaningful privacy protection on the geolocation in any public-use tables or
micro-data published from the decennial census. The block geocodes are “bla-
tantly non-private” (Dinur and Nissim 2003, p. 204). Hence, releasing block-level
population counts without privacy protection still affects the Census Bureau’s
ability to protect other variables. The definition of neighboring databases must
be changed. Only those matching the previously-published outputs are feasible.50

By publishing the PL94-171 tables with exact population counts in all geographies,
the Census Bureau has constrained its ability to protect confidentiality—it always
exposes the block-level geocode from the confidential data.

VI.B Economic Censuses and National Accounts

We have assumed the set of statistics to publish (the query workload) is pre-
specified. Producing tables with greater granularity reduces the accuracy of any
specific table, holding privacy loss constant. How to choose the query workload
is another open question.

Every five years the Census Bureau conducts an economic census of business
establishments. A primary purpose is to provide statistical summaries against
which the Bureau of Economic Analysis (BEA) benchmarks the national accounts.
The BEA benchmarks take as inputs the same detailed geographic, industrial,
and product summaries that the Census Bureau releases to the general public.
These publications are prepared using traditional SDL methods. Regardless of
the method, however, considerably more privacy protection is applied to these
publications than would be required if the BEA used the Census Bureau’s con-
fidential inputs, and then applied the privacy protections directly to the national
account summaries before publication. Such a publication technology would have
greater accuracy and better privacy protection—it would Pareto dominate the sta-

50The applicable variant is bounded differential privacy (Kifer and Machanavajjhala 2011).
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tus quo. Although the Census Bureau and the BEA are distinct agencies, CIPSEA
permits the exchange of confidential business data between these agencies. The
U.S. could achieve at least some of the efficiency gains that countries with consol-
idated statistical agencies achieve by relying more on the authorized data sharing
provisions of that law.

VI.C Tax Data and Tax Simulations

Formal privacy systems allow for other innovative approaches to data dissemi-
nation. Consider the publication of data on individual, audited tax returns that
are essential inputs for simulating the effects of tax policies (Feenberg and Coutts
1993).51 The validity of tax simulations depends on each input record reflecting
the exact relationship between income and tax liability. The Statistics of Income
(SOI) Division of the Internal Revenue Service (IRS) has regularly published a
public-use micro-data file of tax returns protected by micro-aggregation in which
the data from small sets of input records, usually three, were pooled together
(Harris-Kojetin et al. 2005, p. 49).52 The micro-aggregation breaks some features
of the audit consistency of the records and smooths over important breakpoints
in the tax schedule, making them very hard to use in tax simulations. To release
data suitable for tax simulations using differentially private mechanisms would
require very large ε, even though tax returns are highly sensitive.

A different type of formal privacy protection could address both the technol-
ogy and social choice for the tax simulation problem. SOI could run tax simu-
lations behind its own firewall, using confidential tax returns as the inputs. The
outputs of the tax simulation could be released using a differentially private publi-
cation system. Each user of the tax simulation system would have its own privacy-
loss parameter, which SOI could control for global accounting of the privacy loss

51The Congressional Budget Office, the Joint Committee on Taxation, the Office of Tax Analysis
(Treasury), the Federal Reserve System, many research organizations, and statistical agencies run
tax simulations.

52The Statistics of Income Division currently sells these micro-data files, through 2012, for $4,000
(IRS Statistics of Income 2018). For documentation see National Bureau of Economic Research
(2017).
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associated with simulations. Since there is no requirement to hide the parame-
ters of the differentially private publication system, the expected accuracy of the
simulation outputs would be publicly known. These accuracy measures could
then be used to make valid inferences about the effects of changing the inputs of
the simulation. Errors induced by privacy protection could be considered in the
same framework as other errors in the tax simulation. This solution to the social
choice problem replaces an inefficient technology, traditional SDL, with an effi-
cient one, formal privacy. It permits SOI to do the global accounting necessary to
verify that its chosen weight on privacy protection relative to accuracy is properly
implemented.53

VI.D General Purpose Public-use Micro-data

The Census Bureau published the first large-scale machine-readable public-use
micro-data sample (PUMS) from the 1960 Census, selecting a one-percent sample
of the records on the long form (Ruggles et al. 2011). The goal of the PUMS is to
permit statistical analyses not supported by the published tabular statistics. Gen-
erating formally private microdata is a daunting challenge. A better strategy may
be to develop new privacy-preserving approaches to problems that have histori-
cally been solved by PUMS.

One approach is an online system that interactively answers requests for tabu-
lar and statistical models. All such requests can be thought of as queries. When an
agency can specify the set of allowable queries in advance, it is possible to design
a formally private publication mechanism that operates on the confidential micro-
data and returns answers with known accuracy. A formally private PUMS would
be dynamic, like the differentially private query systems embedded in Google’s
Chrome Browser, Apple’s iOS 11, and Microsoft’s Windows 10.54

An interactive online system works for models whose structure the agency

53The system proposed here relies on a differentially private interactive query system, such as
those described by Gupta, Roth and Ullman (2012).

54For the Chrome browser see Fanti, Pihur and Erlingsson (2015). For iOS 11 see Differential
Privacy Team (2017). For Windows 10 see Ding, Kulkarni and Yekhanin (2017).
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can anticipate in advance (for example, the class of all linear regression models).
More complicated analyses can be conducted in restricted-access environments.
The Census Bureau has even acknowledged this publicly (U.S. Census Bureau
2018). Restricted-access environments don’t automatically protect privacy. The
data custodian still needs to decide how much of the privacy-loss budget to re-
serve for such unstructured studies, and the engineers still need to build formally
private data analysis systems.55

VII Directions for Research

This paper has developed a coherent and rigorous framework for guiding deci-
sions about how to effectively publish population statistics while preserving pri-
vacy. To make our framework practical will require more sophisticated models
of production possibilities as well as better models, and measures, of the demand
for privacy and accuracy. We briefly consider several promising extensions.

VII.A Extensions of the Production Model

We have focused on publication of contingency tables and other population ag-
gregates. Our model of accuracy assumes that we only care about learning the
finite-population statistic. This is not the same as learning about super-population
parameters of the process that generated the data, as noted in Section IV. Our ap-
proach can be extended to statistical learning (Wasserman and Zhou 2010; Duchi,
Jordan and Wainwright 2013; Dwork and Rothblum 2016). However, a robust ap-
proach must also allow for ambiguity regarding the true data generating process.

Our analysis of the economic census in Section VI.B suggests that the set of
statistics to publish should be endogenous. Doing so requires a production tech-
nology that allows for different analyses to have different accuracy guarantees un-
der the same publication system. For example, one could endow different users

55Several such systems have been developed: see McSherry (2009), Chen et al. (2016a), and
Harvard Data Privacy Lab (2018).
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with a fixed privacy-loss budget and let them submit queries. The answers would
be accurate in proportion to the ratio of the query sensitivity to the privacy-loss
endowment. More broadly, decisions about data collection, the set of tables to
publish, and the privacy-loss budget, should be determined simultaneously. Our
paper is a necessary step on the way toward a comprehensive analysis of deci-
sions about collection, processing, and dissemination of information by statistical
agencies.

We assume the statistical agency can explicitly enumerate its feasible combi-
nations of privacy loss and statistical accuracy. This works when the statistical
agency uses differentially private mechanisms with known accuracy and privacy
guarantees. In more realistic settings where data are also subject to complex edit-
ing constraints, determining the production function is challenging. This is an
active area of research.

VII.B Extensions of the Model of Preferences

The idea that statistical accuracy and privacy protection are public goods is not
controversial, but does not often appear in models of data provision. We need
models of market provision of statistics when those summaries are public goods.
Such a model might start by extending the framework posed by Ghosh and Roth
(2015) along the lines of Spence (1975), noting that those who sell their data value
privacy less than the marginal consumer whose preferences a monopolistic provider
will internalize.56

As Nissim, Orlandi and Smorodinsky (2012) point out, differential privacy
only bounds the worst-case harm from participation. As one approach toward
developing a better model, Kifer and Machanavajjhala (2012) suggest building
data security algorithms based directly on privacy semantics. Turning to prefer-
ences for accuracy, we have assumed a reduced-form relationship between public
statistics and wealth. A deeper analysis would directly model the role of pub-
lic statistics in improving decision-making, as in Spencer (1985). Alternatively,

56We are grateful to an anonymous referee for pointing out this extension.
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public statistics could enter production as a form of public capital, with accuracy
affecting consumption through the demand for labor or reduced goods prices.

While differential privacy guarantees do not change over time, our static model
abstracts from the possibility that the costs of privacy loss and the benefits of ac-
curate statistics might time-vary. The Census Bureau’s practice of making the
complete responses from each decennial census public after 72 years is an implicit
acknowledgment that privacy preferences (or, equivalently, the costs of privacy
loss) change over time, at least relative to the social benefit of access to the full
data. Further study is needed to determine how these dynamic considerations
should factor into our basic social choice framework.

Finally, our models of data collection implicitly assume truthful reporting.
With declining rates of survey participation, understanding the connection be-
tween data publication and data collection is also important. New thinking about
who creates and who buys data, proposed in Arrieta-Ibarra et al. (2018), can also
inform models of data acquisition by statistical agencies. Nissim, Orlandi and
Smorodinsky (2012), Xiao (2013), and Chen et al. (2016b) also study the problem
of eliciting truthful responses in the presence of privacy concerns.

VII.C The Need for Better Measurement

We need to learn more about preferences for privacy and accuracy. There is a
growing body of evidence from public opinion surveys on attitudes toward pri-
vacy (Childs et al. 2012; Childs 2014; Childs, King and Fobia 2015). While these
are instructive, it is far from clear how reported attitudes correspond to behavioral
responses associated with changes in the risk of privacy loss. Some experiments
have informed the value people attach to providing private data for commercial
use (Acquisti, John and Loewenstein 2013). More information is needed on the
price people attach to privacy loss, particularly as regards the inferential disclo-
sures considered in this paper. With few exceptions (Spencer 1985; Mulry and
Spencer 1993; Spencer and Seeskin 2015), there is virtually no evidence on the
social value of public statistics, let alone the value of improving their accuracy.
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VII.D Conclusion

Formal privacy models facilitate an interpretation of privacy protection as a com-
modity over which individuals have preferences. When statistical accuracy and
privacy are public goods, as is the case for the publication of official statistics, their
optimal levels are a social choice. This social choice can, and should, be guided
by the principle of equating marginal social costs with marginal social benefits. In
developing these ideas, we made many simplifying assumptions. We hope these
can be excused as a feature of combining insights from three different disciplines
to bear on a question of substantial scientific and public interest. We also hope
our paper motivates researchers from economics, demography, computer science,
statistics, and related disciplines to take up the Information Age challenge of de-
signing publication systems that support accurate science but do not require infi-
nite privacy loss.
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A Potential Database Reconstruction Attack against

the 2010 Decennial Census

In Section I.B.3 we discuss the potential for a database reconstruction attack against
the decennial census based on the large number of summary tables published
from the confidential micro-data. Using the schema in the public documentation
for PL94-171, Summary File 1, Summary File 2, and the Public-use Micro-data
Sample, and summarizing from the published tables, there were at least 2.8 bil-
lion linearly independent statistics in PL94-171, 2.8 billion in the balance of SF1, 2.1
billion in SF2, and 31 million in the PUMS https://www.census.gov/prod/
www/decennial.html (cited on March 17, 2018). For the 2010 Census, the na-
tional sample space at the person level has approximately 500,000 cells. The un-
restricted sample space at the census block level has approximately 500,000 × 107

cells. It might seem there are orders of magnitude more unknowns than equa-
tions in the system used for reconstruction. However, traditional SDL does not
protect sample zeros. Consequently, every zero in a block, tract, or county-level
table rules out all record images in the sample space that could have populated
that cell, dramatically reducing the number of unknowns in the relevant equation
system.

App. 1

https://www.census.gov/prod/www/decennial.html
https://www.census.gov/prod/www/decennial.html


The deliberate preservation of sample zeros can be inferred from the technical
documentation: “Data swapping is a method of disclosure avoidance designed
to protect confidentiality in tables of frequency data (the number or percentage
of the population with certain characteristics). Data swapping is done by editing
the source data or exchanging records for a sample of cases. A sample of house-
holds is selected and matched on a set of selected key variables with households
in neighboring geographic areas (geographic areas with a small population) that
have similar characteristics (same number of adults, same number of children,
etc.). Because the swap often occurs within a geographic area with a small pop-
ulation, there is no effect on the marginal totals for the geographic area with a
small population or for totals that include data from multiple geographic areas
with small populations. Because of data swapping, users should not assume that
tables with cells having a value of one or two reveal information about specific
individuals” (U.S. Census Bureau 2012, p. 7-6).

B Randomized Response Details

A custodian collects data from a population of individuals, i ∈ {1, . . . ,N}. Each
member of the population has a sensitive characteristic and an innocuous charac-
teristic. The sensitive characteristic is xi = Yi(1) ∈ {0, 1}, with population propor-
tion Pr [Yi(1) = 1] = π. This proportion, π, is the unknown population quantity of
interest. The non-sensitive characteristic is zi = Yi(0) ∈ {0, 1} with known popula-
tion proportion Pr [Yi(0) = 1] = µ. The custodian collects and publishes a mixture

di = TiYi(1) + (1 − Ti)Yi(0), (B-1)

where Ti indicates whether the sensitive or the non-sensitive question was col-
lected, with Pr [Ti = 1] = ρ. The responses are independent of which information
is collected: (Yi(1),Yi(0)) y Ti. We also require that the non-sensitive item be inde-
pendent of the sensitive item. This is not restrictive, since the innocuous question
can literally be “flip a coin and report whether it came up heads,” as in the original
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application.
The indicator Ti is not observed. Any data analyst observes only the reported

variable di. However, as in a randomized controlled trial, the probability of Ti, ρ,
is known with certainty. Furthermore, the analyst also knows the probability of
the non-sensitive response, µ.

Define β̂ = 1
N

∑
i di, the empirical mean proportion of responses of one. Inde-

pendence of Ti implies E
[̂
β
]

= πρ+µ(1−ρ). It follows that π̂ =
β̂−µ(1−ρ)

ρ
is an unbiased

estimator of π with variance Var[̂π] = Var[̂β]ρ−2.

B1 Privacy under Randomized Response

For given ε, differential privacy requires both Pr [di = 1|Yi(1) = 1]≤ eε Pr [di = 1|Yi(1) = 0],
and Pr [di = 0|Yi(1) = 0] ≤ eε Pr [di = 0|Yi(1) = 1]. Together, these expressions bound
the Bayes factor, which limits how much can learned about the sensitive charac-
teristic upon observation of the collected response.

Making substitutions based on the data-generating model,

1 +
ρ

(1 − ρ)µ
≤ eε (B-2)

and
1 +

ρ

(1 − ρ)(1 − µ)
≤ eε. (B-3)

For a given choice of µ, the differential privacy guaranteed by randomized re-
sponse is the maximum of the values of the left-hand sides of equations (B-2) and
(B-3). Hence, privacy loss is minimized when µ = 1

2 . This is the case we will
consider throughout the remaining discussion. We note doing so assumes that
inferences about affirmative and negative responses are equally sensitive, which
may not always be the case. The results of our analysis do not depend on this
assumption. 57

57These observations highlight another allocation problem: how to trade off protection of affir-
mative responses for the sensitive item Yi(1) = 1 against protection of negative responses Yi(1) = 0.
What do we mean? If ρ is fixed, then increasing µ reduces the Bayes factor in (B-2) (increasing
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For randomized response, the differential privacy guarantee as a function of ρ
is:

ε(ρ) = log
(
1 +

2ρ
(1 − ρ)

)
= log

(
1 + ρ

1 − ρ

)
, (B-4)

which follows from setting µ = 1
2 in equations (B-2) and (B-3).

B2 Statistical Accuracy under Randomized Response

Expressed as a function of ρ, we denote the estimated share of the population with
the sensitive characteristic

π̂ (ρ) =
β̂(ρ) − µ(1 − ρ)

ρ
(B-5)

where β̂(ρ) is the population average response when the sensitive question is
asked with probability ρ. Clearly,

E[̂β(ρ)] = [ρπ + (1 − ρ)µ] (B-6)

and
Var[̂β(ρ)] =

[ρ(π − µ) + µ](1 − ρ(π − µ) − µ)
N

. (B-7)

privacy) and increases the Bayes factor in (B-3) (decreasing privacy). The underlying intuition is
fairly simple. Suppose the sensitive question is “did you lie on your taxes last year?” Most tax
evaders would prefer that their answer not be made public, but non-evaders are probably happy
to let the world know they did not cheat on their taxes. In such a setting, with ρ fixed, we can max-
imize privacy for the tax evader by setting µ to 1. Recall µ is the probability of a positive response
on the non-sensitive item (Yi(0) = 1). If µ = 1, then when the data report di = 0, 1 we know with cer-
tainty that Yi(1) = 0 (i.e., i did not cheat on her taxes). In this special case, the mechanism provides
no privacy against inference regarding non-evasion, but maximum attainable privacy (given the
mechanism) against inference regarding evasion. This is the role the Bloom filter plays in the full
RAPPOR implementation of randomized response (Erlingsson, Pihur and Korolova 2014). More
generally, the choice of µ can be tuned to provide relatively more or less privacy against one infer-
ence or the other.
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It follows that

Var[̂π(ρ)] =
Var[̂β(ρ)]

ρ2 =
[ρ(π − µ) + µ](1 − ρ(π − µ) − µ)

ρ2N
. (B-8)

We can define data quality as:

I(ρ) = Var[̂π (1)] − Var[̂π (ρ)]. (B-9)

This measures the deviation in the sampling variance for the predicted population
parameter, π, relative to the case where there is no privacy protection (ρ = 1).

B3 The Accuracy Cost of Enhanced Privacy under Randomized

Response

Equations (B-4) and (B-9) implicitly define a functional relationship between data
privacy, parameterized by ε, and accuracy, parameterized as I. This function tells
us the marginal cost borne by individuals in the database necessary to achieve
an increase in accuracy of the published statistics. We can characterize the rela-
tionship between accuracy, I, and privacy loss, ε, analytically. First, we invert
equation (B-4) to get ρ as a function of ε:

ρ(ε) =
eε − 1
1 + eε

. (B-10)

Next, we differentiate I with respect to ε via the chain rule: dI
dε = I′(ρ(ε))ρ′(ε):

I′(ρ) =
2 Var[̂β(ρ)]

ρ
−

(π − 1
2 )(1 − 2π)
N2ρ

. (B-11)

and
ρ′(ε) =

2eε

(1 + eε)2 =
1

1 + cosh(ε)
. (B-12)

Both derivatives are positive, so it follows that dI
dε > 0. A similar derivation shows

that d2I
dε2 < 0. Increasing published accuracy requires an increase in privacy loss
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at a rate given by dI
dε > 0. Furthermore, achieving a given increment in accuracy

requires increasingly large privacy losses.

C Details of the Matrix Mechanism

For a single query, we defined the `1 sensitivity in Definition 1. The results in
Theorems 1 and 2 are defined in terms of the sensitivity of a workload of linear
queries, which we denote ∆Q. Following Li et al. (2015),

Theorem 3 (`1 Query Matrix Sensitivity) Define the `1 sensitivity of Q by

∆Q = max
x,y∈Z∗|χ|,||x−y||1≤1

‖Qx − Qy‖1 .

This is equivalent to
∆Q = max

k
‖qk‖1 ,

where qk are the columns of Q.

For the proof, see Li et al. (2015, prop. 4).

D Details of Privacy Semantics

We provide technical definitions associated with the derivations in Kifer and Machanava-
jjhala (2012) described in Section IV.A.

Assume a latent population of individuals hi ∈ H of size N∗. The confidential
database, D, is a random selection of N < N∗ individuals, drawn independently
from H . In this context N is a random variable, too. The database also records
characteristics of each individual, which are drawn from the data domain χ. De-
note the record of individual i as ri. The event “the record ri is included in database
D” has probability πi. Denote the conditional probability of the event “the record
ri = χa ∈ χ” given that ri is in D as fi(ri). Then, the data generating process is
parameterized by θ = {π1, ..., πN , f1, ..., fN}. The probability of database D, given θ,

App. 6



is
Pr [D | θ] =

∏
hi∈D

fi(ri)πi

∏
h j<D

(1 − π j). (D-13)

The complete set of paired hypotheses that differential privacy protects is

Spairs = {(si, s′i) : hi ∈ H , χa ∈ χ}, (D-14)

where s and s′ are defined in Section IV.A. By construction Spairs contains every
pair of hypotheses that constitute a potential disclosure; that is, whether any indi-
vidual hi from the latent population is in or out of the database D and, if in D, has
record ri.

E Derivation of the Data Utility Model

Recall that the matrix mechanism publishes a vector of answers, M(x,Q) to the
known set of queries, Q given an underlying data histogram x. The matrix mech-
anism is implemented by using a data independent mechanism to answer a set
of queries represented by the query strategy matrix, A with sensitivity ∆A and
pseudo-inverse A+. Following Theorem 2, M(x,Q) = Qx + Q(∆A)A+e where e is a
vector of iid random variables with E [e] = 0 and whose distribution is indepen-
dent of x, Q, and A. In what follows, we use the notation σ2

e to denote the common
(scalar) variance of the elements of e. For example, when e is a vector of Laplace
random variables with scale ε−1, we know that σ2

e = 2ε−2. Note that the variance
of the vector e is E

[
eeT

]
= σ2

eIwhere I is the identity matrix conformable with e.
Let Wi = ΠT

i M(x,Q) be a person-specific linear function by which published
statistics are transformed into wealth (or consumption). Individuals have utility
of wealth given by a twice-differentiable and strictly concave function, Ui(Wi). The
total realized ex post wealth for i is Wi = ΠT

i Qx + ΠT
i QA+(∆A)e. We assume i knows

Q and the details of the mechanism M. Uncertainty is over x and e.
For notational convenience, we define a function wi(e; x) = ΠT

i Qx+ΠT
i QA+(∆A)e.

Conditional on x, the expected utility of i from receiving the mechanism output

App. 7



is Ee|x [Ui (wi(e; x)) |x]. We approximate this by taking expectations of a second-
order Taylor Series expansion of hi(e; x) = Ui (wi(e; x)) with respect to e evaluated
at e0 = 0.

Let ∇hi(e0; x) denote the gradient of h with respect to e and let Hi(e0; x) denote
the Hessian. The second-order Taylor series expansion of hi(e; x) evaluated at e0 is

hi(e; x) ≈ hi(e0; x) + (e − e0)T∇hi(e0; x) +
1
2!

(e − e0)T Hi(e0; x)(e − e0). (E-15)

The gradient of h is

∇hi(e0; x) = U′i (wi(e0; x))∆A
(
ΠT

i QA+
)T
. (E-16)

The Hessian is

Hi(e0; x) = U′′i (wi(e0; x))(∆A)2
(
ΠT

i QA+
)T (

ΠT
i QA+

)
. (E-17)

Note that we have used the chain rule in both derivations. We now evaluate the
right hand side of equation (E-15) at e0 = 0. Defining new notation, let wx

i0 =

wi(0; x) = ΠT
i Qx and making substitutions for the gradient and Hessian, we have

hi(e; x) ≈ Ui
(
wx

i0
)

+ U′i (w
x
i0)∆A

[
eT

(
ΠT

i QA+
)T

]
+

1
2

U′′i (wx
i0)∆A2

[
eT

(
ΠT

i QA+
)T (

ΠT
i QA+

)
e
]
.

(E-18)

Now, taking expections with respect to e, conditional on x

Ee|x [h(e; x)|x] ≈ Ui
(
wx

i0
)

+
1
2

U′′i (wx
i0)∆A2 · Ee|x

{[
eT

(
ΠT

i QA+
)T (

ΠT
i QA+

)
e
]
|x
}
. (E-19)

The first-order term drops out because Ee|x [e|x] = 0 by assumption. Focusing on
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the quadratic form in the final summand, standard results imply

Ee|x

{[
eT

(
ΠT

i QA+
)T (

ΠT
i QA+

)
e
]
|x
}

= tr
[
Ee|x

[
eeT |x

] (
ΠT

i QA+
)T (

ΠT
i QA+

)]
(E-20)

= tr
[
σ2

eI
(
ΠT

i QA+
)T (

ΠT
i QA+

)]
(E-21)

= σ2
etr

[(
ΠT

i QA+
)T (

ΠT
i QA+

)]
(E-22)

= σ2
e‖Π

T
i QA‖2F . (E-23)

The last expression is a basic property of the matrix Frobenius norm (Li et al. 2015).
Putting it all together, we have the following approximation to the expected

utility for person i:

E[Ui(Wi)] = Ex
[
Ee|x [h(e; x)|x]

]
(E-24)

≈ Ex

[
Ui

(
wx

i0
)

+
1
2

U′′i (wx
i0)∆A2σ2

e‖Π
T
i QA‖2F

]
(E-25)

= Ex
[
Ui

(
wx

i0
)]

+
1
2
Ex

[
U′′i (wx

i0)
]
∆A2σ2

e‖Π
T
i QA‖2F . (E-26)

Note that we have used the fact that A, Q, and ΠT
i are all independent of x.

From Theorem 2 the accuracy of the matrix mechanism is

I = −σ2
e (∆A)2

∥∥∥QA+
∥∥∥2

F
. (E-27)

We can therefore substitute accuracy, I, into the expression for expected utility

E[Ui(Wi)] ≈ Ex
[
Ui

(
wx

i0
)]
−

{
1
2
Ex

[
U′′i (wx

i0)
] ‖ΠT

i QA‖2F
‖QA‖2F

}
× I. (E-28)

The expression above rationalizes a model for individual-specific data utility that
is linear in accuracy, I: vData

i (I) = ai + biI.
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F Details of Legislative Redistricting Example

This appendix describes the legal background for the legislative redistricting ex-
ample in Section VI.A. These properties of the SDL applied in the 2010 PL94-171
can be deduced from U.S. Census Bureau (2012, p. 7-6), as quoted in Appendix
A, and the details provided in U.S. Census Bureau (2002), which also reveals that
no privacy protection was given to the race and ethnicity tables in the 1990 redis-
tricting data. The origin of the decision not to protect population and voting-age
population counts is difficult to trace in the law. Public Law 105119, title II, 209,
Nov. 26, 1997, 111 Stat. 2480, amended 13 U.S.C. Section 141 to provide that: “(h)
... In both the 2000 decennial census, and any dress rehearsal or other simula-
tion made in preparation for the 2000 decennial census, the number of persons
enumerated without using statistical methods must be publicly available for all
levels of census geography which are being released by the Bureau of the Cen-
sus for: (1) all data releases before January 1, 2001; (2) the data contained in the
2000 decennial census Public Law 94171 [amending this section] data file released
for use in redistricting; (3) the Summary Tabulation File One (STF1) for the 2000
decennial census; and (4) the official populations of the States transmitted from
the Secretary of Commerce through the President to the Clerk of the House used
to reapportion the districts of the House among the States as a result of the 2000
decennial census. ... . (k) This section shall apply in fiscal year 1998 and suc-
ceeding fiscal years.” http://www.law.cornell.edu/uscode/text/13 13
U.S. Code (1954). These amendments to Title 13 concerned the use of sampling to
adjust the population counts within states, as is permitted even under current law.
They gave standing to obtain a copy of population count data that were not ad-
justed by sampling, should the Census Bureau publish such data, which it did not
do in 2000 nor 2010. Even so, only the reapportionment of the House of Represen-
tatives must be done without sampling adjustments (U.S. Supreme Court 1999).
Sampling aside, other statistical methods, like edits and imputations, including
whole-person substitutions, are routinely applied to the confidential enumeration
data before any tabulations are made, including those used to reapportion the
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House of Representatives. These methods were upheld in Utah v. Evans (U.S.
Supreme Court 2002).
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